Vermont Atlas of Life projects make available biodiversity data to the global community of researchers, educators, conservationists, students, and anyone else with an interest in our natural heritage. These data are freely available for download. This list of publications highlights ways in which VAL-mediated data are being used. VAL-mediated data include those from Vermont eBird, Vermont Atlas of Life on iNaturalist, and e-Butterfly, as well as other crowd-sourced projects that we directly support. Additionally, you can view citations of VAL-mediated datasets at GBIF through automated DOI tracking. We would like this list of publications to be as inclusive as possible, so if you know of other publications that have made use of VAL data products, please let us know.

2024

  1. Arlé, E.Knight, T. M.Jiménez-Muñoz, M.Biancolini, D.Belmaker, J., & Meyer, C. (2024). The cumulative niche approach: A framework to assess the performance of ecological niche model projectionsEcology and Evolution14, e11060. https://doi.org/10.1002/ece3.11060
  2. Boonman, C.C.F., Serra-Diaz, J.M., Hoeks, S. et al. (2024). More than 17,000 tree species are at risk from rapid global change. Nat Commun 15, 166. https://doi.org/10.1038/s41467-023-44321-9 
  3. Boxler, B.M., Loftin, C.S. & Sutton, W.B. (2024). Monarch Butterfly (Danaus plexippus) Roost Site-Selection Criteria and Locations East of the Appalachian Mountains, U.S.A.. J Insect Behav 37, 22–48. https://doi.org/10.1007/s10905-023-09844-5
  4. Carvalho, A. P. S., Owens, H. L., St Laurent, R. A., Earl, C., Dexter, K. M., Messcher, R. L., … & Lohman, D. J. (2024). Comprehensive phylogeny of Pieridae butterflies reveals strong correlation between diversification and temperature. iScience. https://doi.org/10.1016/j.isci.2024.109336
  5. Chanachai, J., Asamoah, E. F., Maina, J. M., Wilson, P. D., Nipperess, D. A., Esperon‐Rodriguez, M., & Beaumont, L. J. (2024). What remains to be discovered: A global assessment of tree species inventory completeness. Diversity and Distributions, e13862. https://doi.org/10.1111/ddi.13862
  6. Cheeseman, A.E., Jachowski, D.S. & Kays, R. (2024). From past habitats to present threats: tracing North American weasel distributions through a century of climate and land use change. Landsc Ecol 39, 104. https://doi.org/10.1007/s10980-024-01902-3
  7. Davis, A. J., Groom, Q., Adriaens, T., Vanderhoeven, S., Oldoni, D., Desmet, P., … & Strubbe, D. (2024). Reproducible WiSDM: a workflow for reproducible invasive alien species risk maps under climate change scenarios using standardized open data. Frontiers in Ecology and Evolution12, 1148895. https://doi.org/10.3389/fevo.2024.1148895
  8. deMaynadier, P.M. D. SchlesingerS. P. HardyK. P. McFarlandL. SaucierE. L. WhiteT. A. Zarrillo, and B. E. Young2024Insect pollinators: The time is now for identifying species of greatest conservation needWildlife Society Bulletin e1537. https://doi.org/10.1002/wsb.1537
  9. Felix, F., Julia, L., Michael, O., Tingting, X., Shikun, G., Elia, G., … & Harald, M. (2024). Home-and-away comparisons of life history traits indicate enemy release and founder effects of the solitary bee, Megachile sculpturalis. Basic and Applied Ecology. https://doi.org/10.1016/j.baae.2024.02.008
  10. Goldstein, B. R., Stoudt, S., Lewthwaite, J. M., Shirey, V., Mendoza, E., & Guzman, L. M. (2024). Logistical and preference bias in participatory science butterfly data. Frontiers in Ecology and the Environment, e2783. https://doi.org/10.1002/fee.2783
  11. Huang, T., Morin, P. J., & Ruane, S. (2024). The impact of anthropogenic disturbance and climate change on the distribution of Dekay’s brown snake (Storeria dekayi). Biological Journal of the Linnean Society. https://doi.org/10.1093/biolinnean/blae053
  12. Isitt R, Liebhold AM, Turner RM, Battisti A, Bertelsmeier C, Blake R, Brockerhoff EG, Heard SB, Krokene P, Økland B, Nahrung HF, Rassati D, Roques A, Yamanaka T, Pureswaran DS (2024) Asymmetrical insect invasions between three world regions. NeoBiota 90: 35-51. https://doi.org/10.3897/neobiota.90.110942
  13. Jeong, Y. S., Lee, D. S., Lee, D. Y., & Park, Y. S. (2024). Predicting Potential Occurrence of Adelges tsugae (Homoptera: Adelgidae) on a Global Scale under Climate Change Scenarios Using Maximum Entropy Model. Global Ecology and Conservation, e02861. https://doi.org/10.1016/j.gecco.2024.e02861
  14. Ji H, Wei X, Ma D, Wang X, Liu Q (2024) Predicting the global potential distribution of two major vectors of Rocky Mountain Spotted Fever under conditions of global climate change. PLOS Neglected Tropical Diseases 18(1): e0011883. https://doi.org/10.1371/journal.pntd.0011883
  15. Khaliq, I., Rixen, C., Zellweger, F. et al. Warming underpins community turnover in temperate freshwater and terrestrial communities. Nat Commun 15, 1921 (2024). https://doi.org/10.1038/s41467-024-46282-z
  16. La Sorte, F. A.Cohen, J. M., & Jetz, W. (2024). Data coverage, biases, and trends in a global citizen-science resource for monitoring avian diversityDiversity and Distributions30, e13863. https://doi.org/10.1111/ddi.13863
  17. Larsen, E. A.Belitz, M. W.Di Cecco, G. J.Glassberg, J.Hurlbert, A. H.Ries, L., & Guralnick, R. P. (2024). Overwintering strategy regulates phenological sensitivity and consequences for ecological services in a clade of temperate North American insectsFunctional Ecology3810751088https://doi.org/10.1111/1365-2435.14543
  18. Martín-Sánchez, R., Sancho-Knapik, D., Alonso-Forn, D. et al. (2024). Oak leaf morphology may be more strongly shaped by climate than by phylogeny. Annals of Forest Science 81, 14. https://doi.org/10.1186/s13595-024-01232-z
  19. Onuferko, T. M., & Rightmyer, M. G. (2024). A revision of the simplex species group of the cleptoparasitic bee genus Triepeolus Robertson, 1901 (Hymenoptera: Apidae). European Journal of Taxonomy950(1), 1–106. https://doi.org/10.5852/ejt.2024.950.2643
  20. Petersen, M. J., & Losey, J. E. (2024). Niche overlap with an exotic competitor mediates the abundant niche‐centre relationship for a native lady beetle. Diversity and Distributions, e13825. https://doi.org/10.1111/ddi.13825
  21. Pironon, S. et al. (2024). The global distribution of plants used by humans. Science 383:293-297.DOI:10.1126/science.adg8028
  22. Rousseau Josée S., Woodard S. Hollis, Jepsen Sarina, Du Clos Brianne, Johnston Alison, Danforth Bryan N., Rodewald Amanda D. (2024). Advancing bee conservation in the US: gaps and opportunities in data collection and reporting. Frontiers in Ecology and Evolution 12. https://www.frontiersin.org/articles/10.3389/fevo.2024.1346795
  23. Salazar‐Tortosa, D. F., Saladin, B., Castro, J., & Rubio de Casas, R. (2024). Climate change is predicted to impact the global distribution and richness of pines (genus Pinus) by 2070. Diversity and Distributions, e13849. https://doi.org/10.1111/ddi.13849
  24. Sánchez-Castro, D.Patsiou, T.-S.Perrier, A.Schepers, J., & Willi, Y. (2024). Uncovering the cause of breakup between species’ range limits and niche limits under climate warmingJournal of Biogeography00114https://doi.org/10.1111/jbi.14796
  25. Shibasaki, S., Nakadai, R., & Nakawake, Y. (2024). Biogeographical ‍distributions of trickster animals. Royal Society Open Science11(5), 231577. https://doi.org/10.1098/rsos.231577
  26. Shirey, V.Neupane, N.Guralnick, R., & Ries, L. (2024). Rising minimum temperatures contribute to 50 years of occupancy decline among cold-adapted Arctic and boreal butterflies in North AmericaGlobal Change Biology30, e17205. https://doi.org/10.1111/gcb.17205
  27. Silknetter, Samuel C.Abigail L. BensonJennifer A. Smith, and Meryl C. Mims (2024). Spatial Extent Drives Patterns of Relative Climate Change Sensitivity for Freshwater Fishes of the United States. Ecosphere 15(3): e4779. https://doi.org/10.1002/ecs2.4779
  28. Steiner, M., Huettmann, F., Bryans, N. et al. With super SDMs (machine learning, open access big data, and the cloud) towards more holistic global squirrel hotspots and coldspots. Sci Rep 14, 5204 (2024). https://doi.org/10.1038/s41598-024-55173-8
  29. Stinziano, JRA CharronM Damus (2024). Beyond a diagnostic tool: Validating standardized Mahalanobis distance as a species distribution model for invasive alien species in North America.
  30. Toussaint, A.Pärtel, M. & Carmona, C.P. (2024Contrasting impacts of non-native and threatened species on morphological, life history, and phylogenetic diversity in bird assemblagesEcology Letters27, e14373. https://doi.org/10.1111/ele.14373
  31. Waldron, B. P., Watts, E. F., & Kuchta, S. R. (2024). Traversing the Great Lakes: Post‐glacial colonization by a widespread terrestrial salamander. Journal of Biogeography. https://doi.org/10.1111/jbi.14861
  32. Xia, M.-Q.Luo, Y.-X.Suyama, Y.Matsuo, A.Sakaguchi, S.Wang, Y.-G., & Li, P. (2024). Genetic divergence and ecological adaptation of an eastern North American spring ephemeral Sanguinaria canadensisDiversity and Distributions00, e13813. https://doi.org/10.1111/ddi.13813
  33. Yancy, A. J., Lee, B. R., Kuebbing, S. E., Neufeld, H. S., Spicer, M. E., & Heberling, J. M. (2024). Evaluating the definition and distribution of spring ephemeral wildflowers in eastern North America. American Journal of Botany111(5), e16323. https://doi.org/10.1002/ajb2.16323
  34. Yang, C. H., Feuer, B., Jubery, Z., Deng, Z. K., Nakkab, A., Hasan, M. Z., … & Ganapathysubramanian, B. (2024). Arboretum: A Large Multimodal Dataset Enabling AI for Biodiversity. arXiv preprint arXiv:2406.17720. web: https://baskargroup.github.io/Arboretum/ https://doi.org/10.48550/arXiv.2406.17720.

2023

  1. Ashley C. WahlbergReuber Antoniazzi, and Christopher M. Schalk (2023). Patterns of the introduction, spread, and impact of the brown widow spider, Latrodectus geometricus (Araneae: Theridiidae), in the Americas. The Journal of Arachnology 51(2), 195-205. https://doi.org/10.1636/JoA-S-22-022
  2. Bonnamour, A., Blake, R. E., Liebhold, A. M., Nahrung, H. F., Roques, A., Turner, R. M., … & Bertelsmeier, C. (2023). Historical plant introductions predict current insect invasions. Proceedings of the National Academy of Sciences, 120(24), e2221826120. https://doi.org/10.1073/pnas.2221826120
  3. Callaghan, C.T., Borda-de-Água, L., van Klink, R. et al. (2023). Unveiling global species abundance distributions. Nat Ecol Evol 7, 1600–1609. https://doi.org/10.1038/s41559-023-02173-y
  4. Cerini, FrancescoLeonardo VignoliMichael Blust, and Giovanni Strona (2023). Functional Traits Predict Species Co-Occurrence Patterns In a North American Odonata Metacommunity. Ecosphere 14(12): e4732. https://doi.org/10.1002/ecs2.4732
  5. Chen, Ying, Peng Zhao, Qiaochu Xu, Bingjie Qu, Dan Li, Sarah Clement, Li Li, (2023)
    Relating biodiversity with health disparities of human population: An ecological study across the United States. One Health, Volume 16, https://doi.org/10.1016/j.onehlt.2023.100548.
  6. Chesshire, P.R., Fischer, E.E., Dowdy, N.J., Griswold, T.L., Hughes, A.C., Orr, M.C., Ascher, J.S., Guzman, L.M., Hung, K.-L.J., Cobb, N.S. and McCabe, L.M. (2023), Completeness analysis for over 3000 United States bee species identifies persistent data gap. Ecography e06584. https://doi.org/10.1111/ecog.06584
  7. Chowdhury, S., Zalucki, M. P., Hanson, J. O., Tiatragul, S., Green, D., Watson, J. E., & Fuller, R. A. (2023). Three-quarters of insect species are insufficiently represented by protected areas. One Earth6(2), 139-146. https://doi.org/10.1016/j.oneear.2022.12.003 (pdf)
  8. Cobos, M. E., Nunez-Penichet, C., Campbell, P. D., Cooper, J. C., Machado-Stredel, F., Barve, N., … & Peterson, A. T. (2023). Effects of occurrence data density on conservation prioritization strategies. Biological Conservation, 284, 110207. https://doi.org/10.1016/j.biocon.2023.110207
  9. Cohen, J., & Jetz, W. (2023). Diverse strategies for tracking seasonal environmental niches at hemispheric scaleGlobal Ecology and Biogeography00112https://doi.org/10.1111/geb.13722
  10. Contreras-Díaz, R. G., Nori, J., Chiappa-Carrara, X., Peterson, A. T., Soberón, J., & Osorio-Olvera, L. (2023). Well-intentioned initiatives hinder understanding biodiversity conservation: Cloaked iNaturalist information for threatened species. Biological Conservation282, 110042. https://doi.org/10.1016/j.biocon.2023.110042
  11. Cunze, S., Klimpel, S. & Kochmann, J. Land cover and climatic conditions as potential drivers of the raccoon (Procyon lotor) distribution in North America and Europe. Eur J Wildl Res 69, 62 (2023). https://doi.org/10.1007/s10344-023-01679-x
  12. Daru, B.H., Rodriguez, J. (2023). Mass production of unvouchered records fails to represent global biodiversity patterns. Nat Ecol Evol 7, 816–831. https://doi.org/10.1038/s41559-023-02047-3
  13. Davidow, M.Schafer, T. L. J.Merow, C.Che-Castaldo, J.Düker, M.-C.Feng, E., & Matteson, D. S. (2023). Clustering future scenarios based on predicted range mapsMethods in Ecology and Evolution001– 15https://doi.org/10.1111/2041-210X.14080
  14. deMaynadier, Phillip, Matthew D. SchlesingerSpencer P. HardyKent P. McFarlandLaura SaucierErin L. WhiteTracy A. ZarrilloBruce E. Young (2023). Insect Pollinators: The Time is Now for Identifying Species of Greatest Conservation Need.
  15. Douglas HB, Smith TW, Bouchard P (2023) Palaearctic leaf beetle Chrysolina fastuosa (Coleoptera, Chrysomelidae, Chrysomelinae) new to North America. Biodiversity Data Journal 11: e103261. https://doi.org/10.3897/BDJ.11.e103261
  16. Dorey, James B., Erica E. FischerPaige R. ChesshireAngela Nava-BolañosRobert L. O’ReillySilas BossertShannon M. CollinsElinor M. LichtenbergErika M. TuckerAllan Smith-PardoArmando Falcon-BrindisDiego A. GuevaraBruno RibeiroDiego de PedroJohn PickeringKeng-Lou James HungKatherine A. ParysLindsie M. McCabeMatthew S. RoganRobert L. MinckleySantiago J.E. VelazcoTerry GriswoldTracy A. ZarrilloWalter JetzYanina V. SicaMichael C. OrrLaura Melissa GuzmanJohn A. AscherAlice C. HughesNeil S. Cobb (2023). BeeDC: An R package and globally synthesised and flagged bee occurrence dataset. 
  17. Emberts, Z. (2023). Phasmid species that inhabit colder environments are less likely to have the ability to fly. Ecology and Evolution, 13, e10290. https://doi.org/10.1002/ece3.10290
  18. Espinoza, A. C., Urban-Mead, K. R., Buckner, M. A., Flórez-Gómez, N., Kueneman, J. G., & Danforth, B. N. (2023). Biology of Andrena (Callandrena Sensu Lato) Asteris Robertson (Hymenoptera: Andrenidae), an Eastern Aster Specialist that Makes a Very Deep Nest. Northeastern Naturalist, 29(4), 474-491. https://doi.org/10.1656/045.029.0406 
  19. Ewes, T. (2023). A global analysis of changes in invertebrate species richness with area: deriving global species-area relationships from ecoregional species richness using occurrence records from the GBIF database. Open Universiteit, Thesis. (PDF)
  20. Fonseca, Emanuel M, Tara A Pelletier, Sydney K Decker, Danielle J Parsons, Bryan C Carstens (2023). Pleistocene glaciations caused the latitudinal gradient of within-species genetic diversity, Evolution Letters, Volume 7, Issue 5, Pages 331–338, https://doi.org/10.1093/evlett/qrad030
  21. Garcia‐Rosello, E., Gonzalez‐Dacosta, J., Guisande, C., & Lobo, J. M. (2023). GBIF falls short of providing a representative picture of the global distribution of insects. Systematic Entomology. https://doi.org/10.1111/syen.12589
  22. Gilman, A.V. (2023). Additions to the New Flora of Vermont — III. Phytoneuron 2023-33: 1–18. Published 6 September 2023. https://www.phytoneuron.net/wp-content/uploads/2023/09/33PhytoN-VermontAdditionsIII.pdf
  23. Grether, G.F.Finneran, A.E. & Drury, J.P. (2023Niche differentiation, reproductive interference, and range expansionEcology Letters00115. Available from: https://doi.org/10.1111/ele.14350
  24. Grigoropoulou, A.Hamid, S. A.Acosta, R.Akindele, E. O.Al-Shami, S. A.Altermatt, F.Amatulli, G.Angeler, D. G.Arimoro, F. O.Aroviita, J.Astorga-Roine, A.Bastos, R. C.Bonada, N.Boukas, N.Brand, C.Bremerich, V.Bush, A.Cai, Q.Callisto, M. … Domisch, S. (2023). The global EPTO database: Worldwide occurrences of aquatic insectsGlobal Ecology and Biogeography001– 14https://doi.org/10.1111/geb.13648
  25. Huang, Q., Bateman, B. L., Michel, N. L., Pidgeon, A. M., Radeloff, V. C., Heglund, P., … & Sauer, J. R. (2023). Modeled distribution shifts of North American birds over four decades based on suitable climate alone do not predict observed shifts. Science of the Total Environment857, 159603. https://doi.org/10.1016/j.scitotenv.2022.159603  
  26. Mickayla Mulvihill Johnston, Richard E Feldman, Luis F De León, (2023). Range-wide site-occupancy modeling of Red-winged Blackbirds (Agelaius phoeniceus), Journal of Urban Ecology, Volume 9, Issue 1, 2023, juad015, https://doi.org/10.1093/jue/juad015
  27. Jones, A. G., Obrycki, J. J., Sethuraman, A., & Weisrock, D. W. (2023). Shared patterns of population genomic variation and phenotypic response across rapid range expansions in two invasive lady beetle species. bioRxiv, 2023-01. https://doi.org/10.1101/2023.01.13.523993
  28. Juozaitienė, R.Seebens, H.Latombe, G.Essl, F., & Wit, E. C. (2023). Analysing ecological dynamics with relational event models: The case of biological invasionsDiversity and Distributions2912081225https://doi.org/10.1111/ddi.13752
  29. Kanmaz, O., Şenel, T., & Dalfes, H. N. (2023). A Modeling Framework to Frame a Biological Invasion: Impatiens glandulifera in North America. Plants12(7), 1433. https://doi.org/10.3390/plants12071433 
  30. Keyser, S.R., Fink, D., Gudex-Cross, D., Radeloff, V.C., Pauli, J.N. and Zuckerberg, B. (2023), Snow cover dynamics: an overlooked yet important feature of winter bird occurrence and abundance across the United States. Ecography, 2023: e06378. https://doi.org/10.1111/ecog.06378
  31. Kindt, R. (2023). TreeGOER: A database with globally observed environmental ranges for 48,129 tree species. Global Change Biology. https://doi.org/10.1111/gcb.16914 
  32. Kusch, Erik and Alejandro Ordonez (2023). Ecological Network Resilience & Extinction Proxies – Updating Projections of Ecological Networks. 
  33. Liebherr, J. K., Liebhold, A. M., Woo, B., & Hajek, A. E. (2023). Range expansion within the northern USA by the accidentally introduced Carabus granulatus Linnaeus, 1758 (Coleoptera: Carabidae). BioInvasions Records12. (PDF)
  34. Lioy S, Carisio L, Manino A, Porporato M. Climatic Niche Differentiation between the Invasive Hornet Vespa velutina nigrithorax and Two Native Hornets in Europe, Vespa crabro and Vespa orientalisDiversity. 2023; 15(4):495. https://doi.org/10.3390/d15040495
  35. Mähn, L. A., Hof, C., Brandl, R., & Pinkert, S. (2023). Beyond latitude: Temperature, productivity and thermal niche conservatism drive global body size variation in Odonata. Global Ecology and Biogeography. https://doi.org/10.1111/geb.13661
  36. Mandeville, C.P., Nilsen, E.B., Herfindal, I. et al. Participatory monitoring drives biodiversity knowledge in global protected areas. Commun Earth Environ 4, 240 (2023). https://doi.org/10.1038/s43247-023-00906-2
  37. Marneweck, Courtney J.Stephen N. HarrisAlex J. JensenMeghan P. KeatingMichael MuthersbaughDana L. NelsonEduardo RosalesElizabeth A. SaldoKeifer TitusDavid S. Jachowski (2023). Poleward expansion of Turkey Vultures (Cathartes aura) under future conditions. The Wilson Journal of Ornithology: 135(2): 118–126. doi: https://doi.org/10.1676/22-00046
  38. Medzihorský, V., Trombik, J., Mally, R., Turčáni, M., & Liebhold, A. M. (2023). Insect invasions track a tree invasion: Global distribution of black locust herbivores. Journal of Biogeography, 50, 1285–1298. https://doi.org/10.1111/jbi.14625
  39. Miller, Tricia A., Michael J. Lanzone, Melissa A. Braham, Adam E. Duerr, Jeff Cooper, Scott Somershoe, David Hanni, Eric C. Soehren, Carrie Threadgill, Mercedes Maddox, Jonathan Stober, Christine Kelly, Tom Salo, Andrew Berry, Mark Martell, Scott Mehus, Brian Dirks, Robert Sargent, and Todd E. Katzner (2023). Winter Distribution of Golden Eagles in the Eastern USA,” Journal of Raptor Research 57(4): 522-532. https://doi.org/10.3356/JRR-23-00012
  40. Moreira, H., Kuipers, K. J., Posthuma, L., Zijp, M. C., Hauck, M., Huijbregts, M. A., & Schipper, A. M. (2023). Threats of land use to the global diversity of vascular plants. Diversity and Distributions. https://doi.org/10.1111/ddi.13693
  41. Nizamani, M. M., Papeş, M., Wang, H. F., & Harris, A. J. (2023). How does spatial extent and environmental limits affect the accuracy of species richness estimates from ecological niche models? A case study with North American Pinaceae and Cactaceae. Ecology and Evolution13(4), e10007. https://doi.org/10.1002/ece3.10007
  42. Oliver, R. Y., Iannarilli, F., Ahumada, J., Fegraus, E., Flores, N., Kays, R., … & Jetz, W. (2023). Camera trapping expands the view into global biodiversity and its change. Philosophical Transactions of the Royal Society B, 378(1881), 20220232. https://doi.org/10.1098/rstb.2022.0232
  43. Ondo, I., Dhanjal-Adams, K., Pironon, S., Silvestro, D., Deklerck, V., Grace, O., … & Antonelli, A. (2023). Plant diversity darkspots for global collection priorities. bioRxiv, 2023-09. https://doi.org/10.1101/2023.09.12.557387
  44. Pinkert, S., Sica, Y.V., Winner, K. and Jetz, W. (2023), The potential of ecoregional range maps for boosting taxonomic coverage in ecology and conservation. Ecography, 2023: e06794. https://doi.org/10.1111/ecog.06794
  45. Pope, N. S., Singh, A., Childers, A. K., Kapheim, K. M., Evans, J. D., & López-Uribe, M. M. (2023). The expansion of agriculture has shaped the recent evolutionary history of a specialized squash pollinator. Proceedings of the National Academy of Sciences120(15), e2208116120. https://doi.org/10.1073/pnas.2208116120
  46. Prytula, E. D., Reudink, M. W., LaZerte, S. E., Sonnleitner, J., & McKellar, A. E. (2023). Shifts in breeding distribution, migration timing, and migration routes of two North American swift species. Journal of Field Ornithology94(3). https://doi.org/10.5751/JFO-00341-940314
  47. Rousseau, Josée S.S. Hollis WoodardSarina JepsenBrianne Du ClosAlison JohnstonBryan N. DanforthAmanda D. Rodewald (2023). Advancing bee conservation in the US: gaps and opportunities in data collection and reporting
  48. Sáenz-Ceja, J. E., & Mendoza, M. E. (2023). Priority areas for the conservation of the genus Abies Mill.(Pinaceae) in North America. Journal for Nature Conservation, 126407. https://doi.org/10.1016/j.jnc.2023.126407
  49. Santos, Abraão AlmeidaJordanne JacquesEdel Pérez-López (2023). Impact of climate change on leafhopper vectors of phytoplasmas in North America.
  50. Saunders Sarah P., Joanna Grand Brooke L Bateman Mariah Meek Chad B Wilsey Nicole Forstenhaeusler Erin Graham Rachel Warren Jeff Price (2023). ntegrating climate-change refugia into 30 by 30 conservation planning in North America. Front Ecol Environ 2023; 21(2): 77–84, https://doi.org/10.1002/fee.2592
  51. Schertler, A., Lenzner, B., Dullinger, S., Moser, D., Bufford, J. L., Ghelardini, L., … & Essl, F. (2023). Biogeography and global flows of 100 major alien fungal and fungus‐like oomycete pathogens. Journal of Biogeography. https://doi.org/10.1111/jbi.14755
  52. Sheffield C, Palmier KM (2023) Range expansion of Bombus (Pyrobombus) bimaculatus Cresson in Canada (Hymenoptera, Apidae). Biodiversity Data Journal 11: e104657. https://doi.org/10.3897/BDJ.11.e104657
  53. Shirey, V., Neupane, N., Guralnick, R., & Ries, L. (2023). Rising minimum temperatures contribute to 50 years of shifting Arctic and boreal butterfly communities in North America. bioRxiv, 2023-04. https://doi.org/10.1101/2023.04.24.538168
  54. Smith, A. B.Murphy, S. J.Henderson, D., & Erickson, K. D. (2023). Including imprecisely georeferenced specimens improves accuracy of species distribution models and estimates of niche breadthGlobal Ecology and Biogeography001– 14https://doi.org/10.1111/geb.13628
  55. Su, J., Liu, W., Hu, F., Miao, P., Xing, L., & Hua, Y. (2023). The Distribution Pattern and Species Richness of Scorpionflies (Mecoptera: Panorpidae). Insects14(4), 332. https://doi.org/10.3390/insects14040332 
  56. Szabo, J. K., Forti, L. R., & Callaghan, C. T. (2023). Large biodiversity datasets conform to Benford’s law: Implications for assessing sampling heterogeneity. Biological Conservation280, 109982. https://doi.org/10.1016/j.biocon.2023.109982
  57. Tourville, Jordon, Georgia Murray, Sarah Nelson (2023). Distinct latitudinal patterns of shifting spring phenology across the Appalachian Trail Corridor. bioRxiv 2023.12.11.571108; doi: https://doi.org/10.1101/2023.12.11.571108
  58. Vivas-Toro, I., Martínez-Méndez, N., Sagot, M., León-Avila, G., & Ortega, J. (2023). Landscape genetics of the Southern Flying Squirrel (Glaucomys volans) in the northeastern United States. Journal of Mammalogy, gyad009. https://doi.org/10.1093/jmammal/gyad009
  59. Wang S, Lu Y, Han M, Li L, He P, Shi A, Bai M. (2023). Using MaxEnt Model to Predict the Potential Distribution of Three Potentially Invasive Scarab Beetles in China. Insects 14(3):239. https://doi.org/10.3390/insects14030239
  60. Woodworth, E., Tian, A., Blair, K. et al. Media myopia distorts public interest in US invasive plants. Biol Invasions (2023). https://doi.org/10.1007/s10530-023-03101-8
  61. Xu, WB., Blowes, S.A., Brambilla, V. et al. (2023). Regional occupancy increases for widespread species but decreases for narrowly distributed species in metacommunity time series. Nat Commun 14, 1463. https://doi.org/10.1038/s41467-023-37127-2

2022

  1. Alves-Ferreira, G., Talora, D. C., Solé, M., Cervantes-López, M. J., & Heming, N. M. (2022). Unraveling global impacts of climate change on amphibians distributions: A life-history and biogeographic-based approach. Frontiers in Ecology and Evolution, 1111. https://doi.org/10.3389/fevo.2022.987237
  2. Armitage, D. W. (2022). Global maps of lake surface water temperatures reveal pitfalls of air-for-water substitutions in ecological prediction. Ecography, e06595. https://doi.org/10.1111/ecog.06595
  3. Ankori‐Karlinsky, R., Kalyuzhny, M., Barnes, K. F., Wilson, A. M., Flather, C., Renfrew, R., … & Kadmon, R. (2022). North American Breeding Bird Survey underestimates regional bird richness compared to Breeding Bird Atlases. Ecosphere, 13(2), e3925. https://doi.org/10.1002/ecs2.3925   
  4. Belitz, M. W., Barve, V., Doby, J. R., Hantak, M. M., Larsen, E. A., Li, D., … & Stucky, B. J. (2021). Climate drivers of adult insect activity are conditioned by life history traits. Ecology Letters24(12), 2687-2699. https://doi.org/10.1111/ele.13889 
  5. Bernal-Escobar, M., Zuleta, D. and Feeley, K.J. (2022), Changes in the climate suitability and growth rates of trees in eastern North America. Ecography, 2022: e06298. https://doi.org/10.1111/ecog.06298 
  6. Borgelt, J., Dorber, M., Høiberg, M. A., & Verones, F. (2022). More than half of data deficient species predicted to be threatened by extinction. Communications biology5(1), 1-9. https://doi.org/10.1038/s42003-022-03638-9 
  7. Boyle, B. L., Maitner, B. S., Barbosa, G. G., Sajja, R. K., Feng, X., Merow, C., … & Enquist, B. J. (2022). Geographic name resolution service: A tool for the standardization and indexing of world political division names, with applications to species distribution modeling. Plos one17(11), e0268162. https://doi.org/10.1371/journal.pone.0268162
  8. Buckner, Mark A., and Bryan N. Danforth. 2022. “Climate-Driven Range Shifts of a Rare Specialist Bee, Macropis Nuda (Melittidae), and Its Host Plant, Lysimachia Ciliata (Primulaceae).” Global Ecology and Conservation, June, e02180. https://doi.org/10.1016/j.gecco.2022.e02180
  9. Calhoun, John V. (2022).A local irruption of Chlosyne nycteis (Nymphalidae) in Maine, with an important new food plant record. News of The Lepidopterists’ Society 64(1): 26-33. https://images.peabody.yale.edu/lepsoc/nls/2020s/2022/2022_v64_n1.pdf
  10. Cano‐Barbacil, C., Radinger, J., Olden, J. D., & García‐Berthou, E. (2022). Estimates of niche position and breadth vary across spatial scales for native and alien inland fishes. Global Ecology and Biogeography. https://doi.org/10.1111/geb.13630
  11. Carvalho, A. P. S., Owens, H. L., St Laurent, R. A., Earl, C., Dexter, K. M., Messcher, R. L., … & Lohman, D. J. (2022). Diversification is correlated with temperature in white and sulfur butterflies. bioRxiv. https://doi.org/10.1101/2022.09.22.509088
  12. Chu, J. J., Gillis, D. P., & Riskin, S. H. (2022) Community science reveals links between migration arrival timing advance, migration distance, and wing shape. Journal of Animal Ecology. https://doi.org/10.1111/1365-2656.13755
  13. Crowley, Cynthia M., Kyle F. Tansley, and Neil J. Buckley (2022). First Breeding Record of the Black Vulture (Coragyps atratus) in Vermont, Northeastern Naturalist 29(1), N1-N5. https://doi.org/10.1656/045.029.0103 
  14. David, K. T. (2022). Global gradients in the distribution of animal polyploids. Proceedings of the National Academy of Sciences119(48), e2214070119. https://doi.org/10.1073/pnas.2214070119 
  15. Dorian, N. N., McCarthy, M. W., & Crone, E. E. (2022). Ecological traits explain long‐term phenological trends in solitary bees. Journal of Animal Ecology. https://doi.org/10.1111/1365-2656.13778  
  16. DuBose, T. P., Moore, C. E., Silknetter, S., Benson, A. L., Alexander, T., O’Malley, G., & Mims, M. C. (2023). Mismatch between conservation status and climate change sensitivity leaves some anurans in the United States unprotected. Biological Conservation277, 109866. https://doi.org/10.1016/j.biocon.2022.109866
  17. Ecke, F., Han, B.A., Hörnfeldt, B. et al. Population fluctuations and synanthropy explain transmission risk in rodent-borne zoonoses. Nat Commun 13, 7532 (2022). https://doi.org/10.1038/s41467-022-35273-7
  18. Feng, X., Enquist, B. J., Park, D. S., Boyle, B., Breshears, D. D., Gallagher, R. V., … & López‐Hoffman, L. (2022). A review of the heterogeneous landscape of biodiversity databases: opportunities and challenges for a synthesized biodiversity knowledge base. Global Ecology and Biogeography. https://doi.org/10.1111/geb.13497
  19. Fontaine, A., Simard, A., Brunet, N., & Elliott, K. H. (2022). The scientific contributions of citizen science applied to rare or threatened animals. Conservation Biology. https://doi.org/10.1111/cobi.13976
  20. Gatti, R. C., Reich, P. B., Gamarra, J. G., Crowther, T., Hui, C., Morera, A., … & Liang, J. (2022). The number of tree species on Earth. Proceedings of the National Academy of Sciences, 119(6). https://doi.org/10.1073/pnas.2115329119
  21. Hantak, Maggie M., Robert P. Guralnick, Alina Zare, Brian J. Stucky (2022). Computer vision for assessing species color pattern variation from web-based community science images. bioRxiv 2022.02.11.480114; doi: https://doi.org/10.1101/2022.02.11.480114 
  22. Hardy, Spencer, Michael T. Hallworth, Mark Ferguson, Nathaniel Sharp, Jason Loomis, Emily Anderson, Kent McFarland (2022). The State of Vermont’s Wild Bees 2022. https://stateofbees.vtatlasoflife.org/. Vermont Center for Ecostudies-Vermont Atlas of Life. https://doi.org/10.5281/zenodo.7261315
  23. Haas, E. K., La Sorte, F. A., McCaslin, H. M., Belotti, M. C., & Horton, K. G. (2022). The correlation between eBird community science and weather surveillance radar‐based estimates of migration phenology. Global Ecology and Biogeography31(11), 2219-2230. https://doi.org/10.1111/geb.13567
  24. Jackson, H. M., Johnson, S. A., Morandin, L. A., Richardson, L. L., Guzman, L. M., & M’Gonigle, L. K. (2022). Climate change winners and losers among North American bumblebees. Biology Letters18(6), 20210551. https://doi.org/10.1098/rsbl.2021.0551
  25. La Sorte, F. A., Lepczyk, C. A., & Aronson, M. F. (2023). Light pollution enhances ground‐level exposure to airborne toxic chemicals for nocturnally migrating passerines. Global Change Biology29(1), 57-68. https://doi.org/10.1111/gcb.16443
  26. Lanner, J., Dubos, N., Geslin, B., Leroy, B., Hernández-Castellano, C., Dubaić, J. B., … & Meimberg, H. (2022). On the road: Anthropogenic factors drive the invasion risk of a wild solitary bee species. Science of The Total Environment, 154246. https://doi.org/10.1016/j.scitotenv.2022.154246
  27. Larsen, E. A., Belitz, M. W., Guralnick, R. P., & Ries, L. (2022). Consistent trait-temperature interactions drive butterfly phenology in both incidental and survey data. Scientific Reports12(1), 1-10. https://doi.org/10.1038/s41598-022-16104-7
  28. Li, N.Sun, J.-T.Yin, Y.Hong, X.-Y., & Xue, X.-F. (2022). Global patterns and drivers of herbivorous eriophyoid mite species diversityJournal of Biogeography001– 11https://doi.org/10.1111/jbi.14535
  29. Liao, J., Wu, Z., Wang, H., Xiao, S., Mo, P., & Cui, X. (2023). Projected Effects of Climate Change on Species Range of Pantala flavescens, a Wandering Glider Dragonfly. Biology12(2), 226. https://doi.org/10.3390/biology12020226
  30. Lumbierres, M., Dahal, P.R., Soria, C.D. et al. Area of Habitat maps for the world’s terrestrial birds and mammals. Sci Data 9, 749 (2022). https://doi.org/10.1038/s41597-022-01838-w
  31. Keyser, S.R., Fink, D., Gudex-Cross, D., Radeloff, V.C., Pauli, J.N. and Zuckerberg, B. (2022), Snow cover dynamics: an overlooked yet important feature of winter bird occurrence and abundance across the United States. Ecography e06378. https://doi.org/10.1111/ecog.06378
  32. Machado-Stredel, F., Freeman, B., Jiménez-Garcia, D., Cobos, M. E., Nuñez-Penichet, C., Jiménez, L., … & Peterson, A. T. (2022). On the potential of documenting decadal-scale avifaunal change from before-and-after comparisons of museum and observational data across North America. Avian Research, 13, 100005. https://doi.org/10.1016/j.avrs.2022.100005 
  33. Mallen-Cooper, M.Rodríguez-Caballero, E.Eldridge, D. J.Weber, B.Büdel, B.Höhne, H., & Cornwell, W. K. (2022). Towards an understanding of future range shifts in lichens and mosses under climate changeJournal of Biogeography001– 12https://doi.org/10.1111/jbi.14542
  34. Marcer, A., Chapman, A.D., Wieczorek, J.R., Xavier Picó, F., Uribe, F., Waller, J. and Ariño, A.H. (2022), Uncertainty matters: ascertaining where specimens in natural history collections come from and its implications for predicting species distributions. Ecography e06025. https://doi.org/10.1111/ecog.06025
  35. Morgan E Christman, Lori R Spears, Jonathan B U Koch, Thuy-Tien T Lindsay, James P Strange, Cody L Barnes, Ricardo A Ramirez, Captive Rearing Success and Critical Thermal Maxima of Bombus griseocollis (Hymenoptera: Apidae): A Candidate for Commercialization?, Journal of Insect Science, Volume 22, Issue 6, November 2022, 2, https://doi.org/10.1093/jisesa/ieac064
  36. Nguyen, D., & Leung, B. (2021). How well do species distribution models predict occurrences in exotic ranges?. Global Ecology and Biogeography. https://doi.org/10.1111/geb.13482
  37. Park, D. S.Xie, Y.Thammavong, H. T.Tulaiha, R., & Feng, X. (2022). Artificial Hotspot Occurrence Inventory (AHOI)Journal of Biogeography001– 9https://doi.org/10.1111/jbi.14543
  38. Pelletier, D. & Forrest, J.R.K. (2022Pollen specialisation is associated with later phenology in Osmia bees (Hymenoptera: Megachilidae)Ecological Entomology1– 10. https://doi.org/10.1111/een.13211
  39. Pinkert, S., Barve, V., Guralnick, R., & Jetz, W. (2022). Global geographical and latitudinal variation in butterfly species richness captured through a comprehensive country‐level occurrence database. Global Ecology and Biogeographyhttps://doi.org/10.1111/geb.13475 
  40. Pinkert, S., Sica, Y., Winner, K., & Jetz, W. (2022). The potential of ecoregional range maps for boosting taxonomic coverage in large-scale ecology and conservation. Authorea Preprints. https://www.authorea.com/doi/pdf/10.22541/au.167156303.39224288
  41. Qian, H., Zhang, J., & Jiang, M. C. (2022). Global patterns of fern species diversity: an evaluation of fern data in GBIF. Plant Diversity44(2), 135-140. https://doi.org/10.1016/j.pld.2021.10.001
  42. Richardson, Leif et al. (2022), Bumble bee occurrences of North America from 1805–2020, Dryad, Dataset, https://doi.org/10.5061/dryad.c59zw3r8f 
  43. Ronquillo, C.Stropp, J.Medina, N. G., & Hortal, J. (2023). Exploring the impact of data curation criteria on the observed geographical distribution of mossesEcology and Evolution13, e10786. https://doi.org/10.1002/ece3.10786
  44. Wilson Rankin, E.E. and Rankin, D.T. (2022), Secondary nectar robbing by Lycaenidae and Riodinidae: Opportunistic but not infrequent. Ecology. e3892. https://doi.org/10.1002/ecy.3892
  45. Sandall, E. L., Pinkert, S., & Jetz, W. (2022). Country‐level checklists and occurrences for the world’s Odonata (dragonflies and damselflies). Journal of Biogeography49(8), 1586-1598. https://doi.org/10.1111/jbi.14457
  46. Shirey, V.Khelifa, R.M’Gonigle, L. K., & Guzman, L. M. (2023). Occupancy–detection models with museum specimen data: Promise and pitfallsMethods in Ecology and Evolution14402– 414https://doi.org/10.1111/2041-210X.13896
  47. Song, J. W., Jung, J. M., Nam, Y. W., Byun, H. M., Yoon, S. H., Jung, S. H., & Lee, W. H. (2022). Spatiotemporal Statistics for Analyzing Climatic Conditions Influencing Lymantria dispar Outbreaks. Forests13(9), 1474. https://doi.org/10.3390/f13091474
  48. Soroye, P.Edwards, B. P. M.Buxton, R. T.Ethier, J. P.Frempong-Manso, A.Keefe, H. E.Berberi, A.Roach-Krajewski, M.Binley, A. D.Vincent, J. G.Lin, H.-Y.Cooke, S. J., & Bennett, J. R. (2022). The risks and rewards of community science for threatened species monitoringConservation Science and Practice, e12788. https://doi.org/10.1111/csp2.12788
  49. Vincent, Jaimie G.Schuster, RichardWilson, ScottFink, Daniel, and Bennett, Joseph R.2022. “ Clustering Community Science Data to Infer Songbird Migratory Connectivity in the Western Hemisphere.” Ecosphere 134): e4011. https://doi.org/10.1002/ecs2.4011
  50. Widmer, Brian W., Thomas M. Gehring,Benjamin W. Heumann,Kirsten E. Nicholson (2022). Climate change and range restriction of common salamanders in eastern Canada and the United States. Journal of Wildlife Management. https://doi.org/10.1002/jwmg.22235 
  51. Wilson Rankin, E. E., & Rankin, D. T. Secondary nectar robbing by Lycaenidae and Riodinidae: Opportunistic but not infrequent. Ecology, e3892. https://doi.org/10.1002/ecy.3892
  52. Wolf, S., Mahecha, M. D., Sabatini, F. M., Wirth, C., Bruelheide, H., Kattge, J., … & Kattenborn, T. (2022). Citizen science plant observations encode global trait patterns. Nature Ecology & Evolution6(12), 1850-1859. https://doi.org/10.1038/s41559-022-01904-x
  53. Wu, Y., & Ricklefs, R. E. (2022) Linking multiple hypotheses to a unifying framework of range‐size variation: A case study with American oaks (Quercus spp.). Global Ecology and Biogeography. https://doi.org/10.1111/geb.13610
  54. Wu, Y., & Colautti, R. I. (2022). Evidence for continent-wide convergent evolution and stasis throughout 150 y of a biological invasion. Proceedings of the National Academy of Sciences119(18), e2107584119. https://doi.org/10.1073/pnas.2107584119
  55. Xiaocheng, S., Jiqi, L., Yingdang, R., Qi, S., Zhixing, Y., Xintao, L., … & Linlin, Y. (2022). Distribution Pattern and Geographical Division of Terrestrial Living Things in the World. Journal of Environmental Science and Engineering B 11: 165-188. DOI:10.17265/2162-5263/2022.05.002.
  56. Zhang, Xinke, Guoshuai Zhang, Lixia Tian, Linfang Huang (2023).
    Ecological regulation network of quality in American Ginseng: Insights from macroscopic-mesoscopic-microscopic perspectives. Industrial Crops and Products 206: 117617. https://doi.org/10.1016/j.indcrop.2023.117617.

2021

  1. Arlé, E., Zizka, A., Keil, P., Winter, M., Essl, F., Knight, T., … & Meyer, C. (2021). bRacatus: a method to estimate the accuracy and biogeographical status of georeferenced biological data. Methods in Ecology and Evolution. https://doi.org/10.1111/2041-210X.13629
  2. Bates, A. E., Primack, R. B., Duarte, C. M., & PAN-Environment Working Group (incl. K.P. McFarland). (2021). Global COVID-19 lockdown highlights humans as both threats and custodians of the environment. Biological Conservation, 109175. https://doi.org/10.1016/j.biocon.2021.109175
  3. Beckman, E., Meyer, A., Pivorunas, D., Hoban, S., & Westwood, M. (2021). Conservation Gap Analysis of American Beech. Lisle, IL: The Morton Arboretum. https://www.mortonarb.org/app/uploads/2021/05/conservation_gap_analysis_of_american_beech.pdf
  4. Beckman, E., Meyer, A., Pivorunas, D., Hoban, S., & Westwood, M. (2021). Conservation Gap Analysis of Native U.S. Hickories. Lisle, IL: The Morton Arboretum. https://www.mortonarb.org/app/uploads/2021/05/conservation_gap_analysis_of_native_us_hickories.pdf
  5. Beckman, E., Meyer, A., Pivorunas, D., Hoban, S., & Westwood, M. (2021). Conservation Gap Analysis of Native U.S. Walnuts. Lisle, IL: The Morton Arboretum. https://www.mortonarb.org/app/uploads/2021/08/conservation-gap-analysis-of-native-us-walnuts.pdf
  6. Beckman, E., Meyer, A., Pivorunas, D., Hoban, S., & Westwood, M. (2021). Conservation Gap Analysis of Native U.S. Yews. Lisle, IL: The Morton Arboretum. https://www.mortonarb.org/app/uploads/2021/05/conservation_gap_analysis_of_native_us_yews.pdf
  7. Beery, S. (2021) Scaling biodiversity monitoring for the data age. XRDS: Crossroads, The ACM Magazine for Students. https://dl.acm.org/doi/10.1145/3466857
  8. Belitz, M., Barve, V., Doby, J., Hantak, M., Larsen, E., Li, D., … & Stucky, B. (2021). Climate drivers of adult insect activity are conditioned by life history traits. Ecological Letters https://doi.org/10.1111/ele.13889
  9. Belitz, Michael, Vijay Barve, Joshua Doby, et al. Climate drivers of adult insect activity are conditioned by life history traits. Authorea. March 18, 2021.
    DOI: 10.22541/au.161607528.84717107/v1
  10. Bemmels, J. B., Bramwell, A. C., Anderson, S. A., Luzuriaga‐Aveiga, V. E., Mikkelsen, E. K., & Weir, J. T. (2021). Geographic contact drives increased reproductive isolation in two cryptic Empidonax flycatchers. Molecular Ecology, 30(19), 4833-4844. https://doi.org/10.1111/mec.16105
  11. Bonnamour, A., Gippet, J. M., & Bertelsmeier, C. (2021). Insect and plant invasions follow two waves of globalisation. Ecology letters, 24(11), 2418-2426. https://doi.org/10.1111/ele.13863
  12. Buffalo, V. (2021). Quantifying the relationship between genetic diversity and population size suggests natural selection cannot explain Lewontin’s Paradox. Elife, 10, e67509. https://doi.org/10.7554/eLife.67509
  13. Busch, Anna K., Briana E Wham, John F Tooker (2021). Life History, Biology, and Distribution of Pterostichus melanarius (Coleoptera: Carabidae) in North America, Environmental Entomology https://doi.org/10.1093/ee/nvab090
  14. Callaghan, C. T., Nakagawa, S., & Cornwell, W. K. (2021). Global abundance estimates for 9,700 bird species. Proceedings of the National Academy of Sciences, 118(21). https://doi.org/10.1073/pnas.2023170118
  15. Callaghan, C. T., Poore, A. G., Hofmann, M., Roberts, C. J., & Pereira, H. M. (2021). Large-bodied birds are over-represented in unstructured citizen science data. Scientific reports, 11(1), 1-11. https://doi.org/10.1038/s41598-021-98584-7
  16. Carril, O. M., & Wilson, J. S. (2021). Common Bees of Eastern North America (Vol. 151). Princeton University Press.
  17. Cohen, J.M., D. Fink, and B. Zuckerberg (2021). Extreme winter weather disrupts bird occurrence and abundance patterns at geographic scales. Ecography https://doi.org/10.1111/ecog.05495
  18. Crimmins, T. M., Posthumus, E., Schaffer, S., & Prudic, K. L. (2021). COVID-19 impacts on participation in large scale biodiversity-themed community science projects in the United States. Biological Conservation, 256, 109017. https://doi.org/10.1016/j.biocon.2021.109017
  19. Cuddington, K., Sobek-Swant, S., Drake, J. et al. (2021). Risks of giant hogweed (Heracleum mantegazzianum) range increase in North America. Biol Invasions. https://doi.org/10.1007/s10530-021-02645-x
  20. Delso, Á., Fajardo, J. & Muñoz, J. Protected area networks do not represent unseen biodiversity. Sci Rep 11, 12275 (2021). https://doi.org/10.1038/s41598-021-91651-z
  21. Geest, Emily A., Kristen A Baum, Environmental Variables Influencing Five Speyeria (Lepidoptera: Nymphalidae) Species’ Potential Distributions of Suitable Habitat in the Eastern United States, Environmental Entomology, 2021;, nvab001, https://doi.org/10.1093/ee/nvab001
  22. Gudex-Cross, D., Keyser, S. R., Zuckerberg, B., Fink, D., Zhu, L., Pauli, J. N., & Radeloff, V. C. (2021). Winter Habitat Indices (WHIs) for the contiguous US and their relationship with winter bird diversity. Remote Sensing of Environment, 255, 112309. https://doi.org/10.1016/j.rse.2021.112309
  23. Guo, W. Y., Serra-Diaz, J. M., Schrodt, F., Eiserhardt, W. L., Maitner, B. S., Merow, C., … & Svenning, J. C. (2022). High exposure of global tree diversity to human pressure. Proceedings of the National Academy of Sciences119(25), e2026733119. https://doi.org/10.1073/pnas.2026733119
  24. Hirt, M. R., Barnes, A. D., Gentile, A., Pollock, L. J., Rosenbaum, B., Thuiller, W., … & Brose, U. (2021). Environmental and anthropogenic constraints on animal space use drive extinction risk worldwide. Ecology Letters. https://doi.org/10.1111/ele.13872
  25. Hochachka, W. M., Alonso, H., Gutiérrez-Expósito, C., Miller, E., & Johnston, A. (2021). Regional variation in the impacts of the COVID-19 pandemic on the quantity and quality of data collected by the project eBird. Biological Conservation, 254, 108974. https://doi.org/10.1016/j.biocon.2021.108974
  26. Hughes, A. C., Orr, M. C., Ma, K., Costello, M. J., Waller, J., Provoost, P., … & Qiao, H. (2021). Sampling biases shape our view of the natural world. Ecography. https://doi.org/10.1111/ecog.05926
  27. Hughes, A. C., Orr, M. C., Yang, Q., & Qiao, H. (2021). Effectively and accurately mapping global biodiversity patterns for different regions and taxa. Global Ecology and Biogeography. https://doi.org/10.1111/geb.13304
  28. Humphreys, J. M., Young, K. I., Cohnstaedt, L. W., Hanley, K. A., & Peters, D. P. (2021). Vector Surveillance, Host Species Richness, and Demographic Factors as West Nile Disease Risk Indicators. Viruses, 13(5), 934. https://doi.org/10.3390/v13050934
  29. Jiangyong Qu, Yanran Xu, Yutong Cui, Sen Wu, Lijun Wang, Xiumei Liu, Zhikai Xing, Xiaoyu Guo, Shanshan Wang, Ruoran Li, Xiaoyue Sun, Xiang Li, Xiyue Wang, Tao Liu, Xumin Wang (2021). MODB: a comprehensive mitochondrial genome database for Mollusca, Database, Volume 2021, baab056, https://doi.org/10.1093/database/baab056
  30. Juergens, J., Bruslund, S., Staerk, J., Nielsen, R. O., Shepherd, C. R., Leupen, B., … & Conde, D. A. (2021). A standardized dataset for conservation prioritization of songbirds to support CITES. Data in Brief, 36, 107093. https://doi.org/10.1016/j.dib.2021.107093
  31. Laney, J. A., Hallman, T. A., Curtis, J. R., & Robinson, W. D. (2021). The influence of rare birds on observer effort and subsequent rarity discovery in the American birdwatching community. PeerJ, 9, e10713. https://peerj.com/articles/10713/
  32. Lewthwaite, J. M., & Mooers, A. Ø. Geographical homogenization but little net change in the local richness of Canadian butterflies. Global Ecology and Biogeography. https://doi.org/10.1111/geb.13426
  33. Lumbierres, M., Dahal, P. R., Di Marco, M., Butchart, S. H., Donald, P. F., & Rondinini, C. (2021). Translating habitat class to land cover to map area of habitat of terrestrial vertebrates. Conservation Biology. https://doi.org/10.1111/cobi.13851
  34. McGeoch, M. A., Arlé, E., Belmaker, J., Buba, Y., Clarke, D. A., Essl, F., … & Winter, M. (2021). Policy-relevant indicators for invasive alien species assessment and reporting. bioRxiv. https://doi.org/10.1101/2021.08.26.457851
  35. Nastasi LF, Deans AR (2021) Catalogue of Rose Gall, Herb Gall, and Inquiline Gall Wasps (Hymenoptera: Cynipidae) of the United States, Canada and Mexico. Biodiversity Data Journal 9: e68558. https://doi.org/10.3897/BDJ.9.e68558.
  36. Oliver, R. Y., Meyer, C., Ranipeta, A., Winner, K., & Jetz, W. (2021). Global and national trends, gaps, and opportunities in documenting and monitoring species distributions. PLoS Biology, 19(8), e3001336. https://doi.org/10.1371/journal.pbio.3001336
  37. Palacio, R. D., Negret, P. J., Velásquez‐Tibatá, J., & Jacobson, A. P. (2021). A data‐driven geospatial workflow to map species distributions for conservation assessments. Diversity and Distributions. https://doi.org/10.1111/ddi.13424
  38. Pearman-Gillman, S. B., Katz, J. E., Mickey, R. M., Murdoch, J. D., & Donovan, T. M. (2020). Predicting wildlife distribution patterns in New England USA with expert elicitation techniques. Global Ecology and Conservation, 21, e00853. https://doi.org/10.1016/j.gecco.2019.e00853
  39. Pelletier, Tara A , Danielle J Parsons, Sydney K Decker, Stephanie Crouch, Eric Franz, Jeffery Ohrstrom, Bryan C Carstens (2021). phylogatR: Phylogeographic data aggregation and repurposing
    bioRxiv 2021.10.11.461680 https://doi.org/10.1101/2021.10.11.461680
  40. Pitman, N.C.A., Suwa, T., Ulloa Ulloa, C. et al. Identifying gaps in the photographic record of the vascular plant flora of the Americas. Nat. Plants (2021). https://doi.org/10.1038/s41477-021-00974-2
  41. Powers, B. F., Winiarski, J. M., Requena‐Mullor, J. M., & Heath, J. A. (2021). Intra‐specific variation in migration phenology of American Kestrels (Falco sparverius) in response to spring temperatures. Ibis. https://doi.org/10.1111/ibi.12953
  42. Qian, H., Zhang, J., & Jiang, M. C. (2021). Global patterns of fern species diversity: An evaluation of fern data in GBIF. Plant Diversity. https://doi.org/10.1016/j.pld.2021.10.001
  43. Rocha‐Ortega, M., Rodriguez, P., & Córdoba‐Aguilar, A. (2021). Geographical, temporal and taxonomic biases in insect GBIF data on biodiversity and extinction. Ecological Entomology. DOI: 10.1111/een.13027
  44. Ruiz-Gutierrez, V., E. Bjerre, M. Otto, G. Zimmerman, B. Millsap, D. Fink, E. F. Stuber, M. Strimas-Mackey, and O. J. Robinson. (2021). A pathway for citizen-science data to inform policy: a case study using eBird data for defining low-risk collision areas for wind energy development. Journal of Applied Ecology. https://doi.org/10.1111/1365-2664.13870 
  45. Schneider, K., Makowski, D., & van der Werf, W. (2021). Predicting hotspots for invasive species introduction in Europe. Environmental Research Letters, 16(11), 114026. https://doi.org/10.1088/1748-9326/ac2f19
  46. Schuetz, J. G., & Johnston, A. (2021). Tracking the cultural niches of North American birds through time. People and Nature, 3(1), 251-260. https://doi.org/10.1002/pan3.10173
  47. Somveille, M., Bay, R. A., Smith, T. B., Marra, P. P., & Ruegg, K. C. (2021). A general theory of avian migratory connectivity. Ecology Letters, 24(9), 1848-1858. https://doi.org/10.1111/ele.13817
  48. Shirey, V., Belitz, M.W., Barve, V. and Guralnick, R. (2021), A complete inventory of North American butterfly occurrence data: narrowing data gaps, but increasing bias. Ecography, 44: 537-547. https://doi.org/10.1111/ecog.05396
  49. Suissa, J. S., Sundue, M. A., & Testo, W. L. (2021). Mountains, climate and niche heterogeneity explain global patterns of fern diversity. Journal of Biogeography. https://doi.org/10.1038/s41559-021-01528-7
  50. Supp, S. R., Bohrer, G., Fieberg, J., & La Sorte, F. A. (2021). Estimating the movements of terrestrial animal populations using broad-scale occurrence data. Movement Ecology, 9(1), 1-19. https://doi.org/10.1186/s40462-021-00294-2
  51. Vermont Fish & Wildlife Department. (2021). Guidance for the Review & Mitigation of Impacts to Grassland Bird Habitat in Connection with Regulated Projects in Vermont. Vermont Agency of Natural Resources – Fish and Wildlife Department. Unpublished report October 2021. (pdf)
  52. Wilson J. Keaton, Casajus Nicolas, Hutchinson Rebecca A., McFarland Kent P., Kerr Jeremy T., Berteaux Dominique, Larrivée Maxim, Prudic Kathleen L. (2021). Climate Change and Local Host Availability Drive the Northern Range Boundary in the Rapid Expansion of a Specialist Insect Herbivore, Papilio cresphontes. Frontiers in Ecology and Evolution 9:85. https://doi.org/10.3389/fevo.2021.579230 
  53. Zattara, E. E., & Aizen, M. A. (2021). Worldwide occurrence records suggest a global decline in bee species richness. One Earth, 4(1), 114-123. https://doi.org/10.1016/j.oneear.2020.12.005

2020

  1. BIEN: Botanical Information and Ecology Network 4.2. November 2020 https://bien.nceas.ucsb.edu/bien/
  2. Perez‐Navarro, M. A., Broennimann, O., Esteve, M. A., Moya‐Perez, J. M., Carreño, M. F., Guisan, A., & Lloret, F. Temporal variability is key to modelling the climatic niche. Diversity and Distributions. https://doi.org/10.1111/ddi.13207
  3. Liria, J., Szumik, C. A., & Goloboff, P. A. (2020). Analysis of endemism of world arthropod distribution data supports biogeographic regions and many established subdivisions. Cladistics. https://doi.org/10.1111/cla.12448
  4. Walker, J., and P. D. Taylor. 2020. Evaluating the efficacy of eBird data for modeling historical population trajectories of North American birds and for monitoring populations of boreal and Arctic breeding species. Avian Conservation and Ecology 15(2):10.
    https://doi.org/10.5751/ACE-01671-150210
  5. La Sorte, F. A., & Horton, K. G. (2020). Seasonal variation in the effects of artificial light at night on the occurrence of nocturnally migrating birds in urban areas. Environmental Pollution, 116085. https://doi.org/10.1016/j.envpol.2020.116085
  6. Klingbeil, B. T., La Sorte, F. A., Lepczyk, C. A., Fink, D., & Flather, C. H. (2020). Geographical associations with anthropogenic noise pollution for North American breeding birds. Global Ecology and Biogeography, 29(1), 148-158. https://doi.org/10.1111/geb.13016
  7. Ingenloff, K., & Peterson, A. T. (2020). Incorporating time into the traditional correlational distributional modelling framework: A proof‐of‐concept using the Wood Thrush Hylocichla mustelina. Methods in Ecology and Evolution. https://doi.org/10.1111/2041-210X.13523
  8. Fink, D., Auer, T., Johnston, A., Ruiz‐Gutierrez, V., Hochachka, W. M., & Kelling, S. (2020). Modeling avian full annual cycle distribution and population trends with citizen science data. Ecological Applications, 30(3), e02056. https://doi.org/10.1002/eap.2056
  9. Neate-Clegg, M. H., Horns, J. J., Adler, F. R., Aytekin, M. Ç. K., & Şekercioğlu, Ç. H. (2020). Monitoring the world’s bird populations with community science data. Biological Conservation, 248, 108653. https://doi.org/10.1016/j.biocon.2020.108653
  10. Covino, K. M., Horton, K. G., & Morris, S. R. (2020). Seasonally specific changes in migration phenology across 50 years in the Black-throated Blue Warbler. The Auk, 137(2), ukz080.
  11. Weiser, E. L., Diffendorfer, J. E., Lopez-Hoffman, L., Semmens, D., & Thogmartin, W. E. (2020). Challenges for leveraging citizen science to support statistically robust monitoring programs. Biological Conservation, 242, 108411. https://doi.org/10.1016/j.biocon.2020.108411
  12. Orr, Michael C., Alice C. Hughes, Douglas Chesters, John Pickering, Chao-Dong Zhu, John S. Ascher (2020). Global Patterns and Drivers of Bee Distribution. Current Biology. DOI: https://doi.org/10.1016/j.cub.2020.10.053
  13. Chevalier, Manuel (2018): GBIF for CREST database. figshare. Dataset. https://doi.org/10.6084/m9.figshare.6743207.v8
  14. La Sorte, F. A., & Graham, C. H. (2020). Phenological synchronization of seasonal bird migration with vegetation greenness across dietary guilds. Journal of Animal Ecology. https://doi.org/10.1111/1365-2656.13345
  15. Smith, J. R., Hendershot, J. N., Nova, N., & Daily, G. C. (2020). The biogeography of ecoregions: Descriptive power across regions and taxa. Journal of Biogeography. https://doi.org/10.1111/jbi.13871
  16. Walton S, Livermore L, Bánki O, Cubey RWN, Drinkwater R, Englund M, Goble C, Groom Q, Kermorvant C, Rey I, Santos CM, Scott B, Williams AR, Wu Z (2020) Landscape Analysis for the Specimen Data Refinery. Research Ideas and Outcomes 6: e57602. https://doi.org/10.3897/rio.6.e57602
  17. Liu, X., Blackburn, T.M., Song, T. et al. Animal invaders threaten protected areas worldwide. Nat Commun 11, 2892 (2020). https://doi.org/10.1038/s41467-020-16719-2
  18. Mothes, C. C., Howell, H. J., & Searcy, C. A. (2020). Habitat suitability models for the imperiled Wood Turtle (Glyptemys insculpta) raise concerns for the species’ persistence under future climate change. Global Ecology and Conservation. https://doi.org/10.1016/j.gecco.2020.e01247
  19. Gladstone NS, Bordeau TA, Leppanen C, McKinney ML (2020) Spatiotemporal patterns of non-native terrestrial gastropods in the contiguous United States. NeoBiota 57: 133-152. https://doi.org/10.3897/neobiota.57.52195
  20. Chapman AD, Belbin L, Zermoglio PF, Wieczorek J, Morris PJ, Nicholls M, Rees ER, Veiga AK, Thompson A, Saraiva AM, James SA, Gendreau C, Benson A, Schigel D (2020) Developing Standards for Improved Data Quality and for Selecting Fit for Use Biodiversity Data. Biodiversity Information Science and Standards 4: e50889. https://doi.org/10.3897/biss.4.50889
  21. Du, CChen, JJiang, LQiao, G. (2020) High correlation of species diversity patterns between specialist herbivorous insects and their specific hostsJ Biogeogr. 001– 14https://doi.org/10.1111/jbi.13816
  22. Pearman-Gillman, S. B., Katz, J. E., Mickey, R. M., Murdoch, J. D., & Donovan, T. M. (2020). Predicting wildlife distribution patterns in New England USA with expert elicitation techniques. Global Ecology and Conservation21, e00853. https://doi.org/10.1016/j.gecco.2019.e00853
  23. van Nieukerken EJ, Eiseman CS (2020) Splitting the leafmining shield-bearer moth genus Antispila Hübner (Lepidoptera, Heliozelidae): North American species with reduced venation placed in Aspilanta new genus, with a review of heliozelid morphology. ZooKeys 957: 105-161. https://doi.org/10.3897/zookeys.957.53908
  24. Pegan, T. M., & Winger, B. M. (2020). The influence of seasonal migration on range size in temperate North American passerines. Ecography, 43(8), 1191-1202. https://doi.org/10.1111/ecog.05070
  25. Gilman, A.V., E.T. Doucette, B. Engstrom, A. Marcus, and M.J. Peters. (2020). Additions to the New Flora of Vermont—II. Phytoneuron 2020-16: 1–17. Published 28 February 2020. https://www.phytoneuron.net/2020Phytoneuron/16PhytoN-VermontFloraAdditions.pdf

2019

  1. J. Keaton WilsonNicolas CasajusRebecca A. HutchinsonKent P. McFarlandJeremy T. KerrDominique BerteauxMaxim LarrivéeKathleen L. Prudic. Climate change and local host availability drive the northern range boundary in the rapid northward expansion of the eastern giant swallowtail butterfly.
  2. Girardello, M., Chapman, A., Dennis, R., Kaila, L., Borges, P. A., & Santangeli, A. (2019). Gaps in butterfly inventory data: A global analysis. Biological conservation236, 289-295. https://doi.org/10.1016/j.biocon.2019.05.053
  3. Moore, M. P., Lis, C., Gherghel, I., & Martin, R. A. (2019). Temperature shapes the costs, benefits and geographic diversification of sexual coloration in a dragonfly. Ecology letters, 22(3), 437-446. https://doi.org/10.1111/ele.13200

2018

  1. Akin-Fajiye, M., Gurevitch, J. (2018). The influence of environmental factors on the distribution and density of invasive Centaurea stoebe across Northeastern USA. Biol Invasions 20, 3009–3023. https://doi.org/10.1007/s10530-018-1755-7
  2. Hallworth M.T., P.P. Marra, K.P. McFarland, S. Zahendra, C.E. Studds. 2018. Tracking dragons: stable isotopes reveal the annual cycle of a long-distance migratory insect. Biology Letters 14: 20180741. http://dx.doi.org/10.1098/rsbl.2018.0741 (PDF)
  3. Richardson, L.L., K.P. McFarland, S. Zahendra, and S. Hardy. 2018. Bumble bee (Bombus) distribution and diversity in Vermont, USA: a century of change. Journal of Insect Conservationhttps://doi.org/10.1007/s10841-018-0113-5. (PDF)
  4. Serra-Diaz, J.M., Enquist, B.J., Maitner, B. et al. Big data of tree species distributions: how big and how good?. For. Ecosyst. 4, 30 (2017). https://doi.org/10.1186/s40663-017-0120-0
  5. Soroye, P., Ahmed, N., & Kerr, J. T. (2018). Opportunistic citizen science data transform understanding of species distributions, phenology, and diversity gradients for global change research. Global change biology24(11), 5281-5291. https://doi.org/10.1111/gcb.14358
  6. Smith, J. R., Letten, A. D., Ke, P. J., Anderson, C. B., Hendershot, J. N., Dhami, M. K., … & Routh, D. (2018). A global test of ecoregions. Nature Ecology & Evolution2(12), 1889-1896. https://doi.org/10.1038/s41559-018-0709-x
  7. U.S. Fish and Wildlife Service. 2018. Species status assessment report for the frosted elfin (Callophrys irus), Version 1.2. April 2018. Cortland, NY. https://www.fws.gov/sites/default/files/documents/508_frostedelfin_speciesstatusassessment.pdf

2017

  1. Merow, C., Bois, S. T., Allen, J. M., Xie, Y., & Silander, J. A. (2017). Climate change both facilitates and inhibits invasive plant ranges in New England. Proceedings of the National Academy of Sciences114(16), E3276-E3284. https://doi.org/10.1073/pnas.1609633114
  2. Prudic, K.L., K.P. McFarland, J.C. Oliver, R.A. Hutchinson, E.C. Long, J.T. Kerr, and M. Larrivée. 2017. eButterfly: Leveraging Massive Online Citizen Science for Butterfly Conservation. Insects 8(2): 53. doi:10.3390/insects8020053
  3. Serra-Diaz, J.M., Enquist, B.J., Maitner, B. et al. (2017). Big data of tree species distributions: how big and how good?. For. Ecosyst. 4, 30. https://doi.org/10.1186/s40663-017-0120-0 

2016

  1. Davis, S. L., & Cipollini, D. (2016). Range, genetic diversity and future of the threatened butterfly, Pieris virginiensis. Insect Conservation and Diversity, 9(6), 506-516. https://doi.org/10.1111/icad.12189

2015

  1. Bell, Ross T. 2015. Carabidae of Vermont and New Hampshire. 2nd ed. Shires Press, Manchester Center, Vermont. 385pp. https://doi.org/10.6084/m9.figshare.7716359.v1
  2. Blust, M. and Pfeiffer, B. (2015). The Odonata of Vermont. Bulletin of American Odonatology 11(3-4), 69-119.
  3. van der Hoek, Y., A.M. Wilson, R.B. Renfrew, J. Walsh, P.G. Rodewald, J.Baldy, and L.L. Manne. 2015. Regional variability in extinction thresholds for forest birds in the north-eastern United States: an examination of potential drivers using long-term breeding bird atlas datasets. Diversity and Distributions  DOI: 10.1111/ddi.12327  (Abstract)

2014

  1. McFarland, K.P., L. Richardson, and S. Zahendra. 2014. Rusty-patched Bumble Bee (Bombus affinis): Report to the Vermont Endangered Species Committee. DOI: 10.13140/RG.2.1.1305.9289 (PDF)
  2. McFarland, K.P., L. Richardson, and S. Zahendra. 2014. Yellow-banded Bumblebee (Bombus terricola): Report to the Vermont Endangered Species Committee. DOI: 10.13140/RG.2.1.1764.0405.1844 (PDF)
  3. McFarland, K.P., L. Richardson, and S. Zahendra. 2014. Ashton’s Cuckoo Bumblebee (Bombus ashtoni): A report to the Vermont Endangered Species Committee. DOI: 10.13140/RG.2.1.2026.1844 (PDF)
  4. White, Erin L., Pamela D. Hunt, Matthew D. Schlesinger, Jeffrey D. Corser, and Phillip G. deMaynadier. (2014). A conservation status assessment of Odonata for the
    northeastern United States. New York Natural Heritage Program, Albany, NY. (PDF)

2013

  1. Renfrew, R. B., ed. 2013. The Second Atlas of Breeding Birds of Vermont. University Press of New England, Hanover, NH. 548 pp. https://doi.org/10.6084/m9.figshare.11499330.v1 
  2. van der Hoek, Y., R.B. Renfrew, and L.L. Manne. 2013. Assessing regional and interspecific variation in threshold responses of forest breeding birds through broad scale analyses. PLoS ONE 8:e55996. https://doi.org/10.1371/journal.pone.0055996

2010

  1. Hunt, P. D., Blust, M., & Morrison, F. (2010). Lotic Odonata of the Connecticut River in New Hampshire and Vermont. Northeastern Naturalist,17(2), 175-188.
  2. McFarland, K.P. and S. Zahendra. 2010. The Vermont Butterfly Survey, 2002 – 2007: A Final Report to the Natural Heritage Information Project of the Vermont Department of Fish and Wildlife. 298 pp. dx.doi.org/10.6084/m9.figshare.827269.v1

pre-2000

  1. Laughlin, Sarah B. and Douglas P. Kibbe, eds. 1985. The Atlas of the Breeding Birds of Vermont. Hanover, NH: University Press of New England. 456pp. https://doi.org/10.6084/m9.figshare.11449779.v1