Vermont Atlas of Life projects make available biodiversity data to the global community of researchers, educators, conservationists, students, and anyone else with an interest in our natural heritage. These data are freely available for download. This list of publications highlights ways in which VAL-mediated data are being used. VAL-mediated data include those from Vermont eBird, Vermont Atlas of Life on iNaturalist, and e-Butterfly, as well as other crowd-sourced projects that we directly support. Additionally, you can view citations of VAL-mediated datasets at GBIF through automated DOI tracking. We would like this list of publications to be as inclusive as possible, so if you know of other publications that have made use of VAL data products, please let us know.
2024
- 2024). The cumulative niche approach: A framework to assess the performance of ecological niche model projections. Ecology and Evolution, 14, e11060. https://doi.org/10.1002/ece3.11060 , , , , , & (
- Boonman, C.C.F., Serra-Diaz, J.M., Hoeks, S. et al. (2024). More than 17,000 tree species are at risk from rapid global change. Nat Commun 15, 166. https://doi.org/10.1038/s41467-023-44321-9
- Boxler, B.M., Loftin, C.S. & Sutton, W.B. (2024). Monarch Butterfly (Danaus plexippus) Roost Site-Selection Criteria and Locations East of the Appalachian Mountains, U.S.A.. J Insect Behav 37, 22–48. https://doi.org/10.1007/s10905-023-09844-5
- Carvalho, A. P. S., Owens, H. L., St Laurent, R. A., Earl, C., Dexter, K. M., Messcher, R. L., … & Lohman, D. J. (2024). Comprehensive phylogeny of Pieridae butterflies reveals strong correlation between diversification and temperature. iScience. https://doi.org/10.1016/j.isci.2024.109336
- Chanachai, J., Asamoah, E. F., Maina, J. M., Wilson, P. D., Nipperess, D. A., Esperon‐Rodriguez, M., & Beaumont, L. J. (2024). What remains to be discovered: A global assessment of tree species inventory completeness. Diversity and Distributions, e13862. https://doi.org/10.1111/ddi.13862
- Cheeseman, A.E., Jachowski, D.S. & Kays, R. (2024). From past habitats to present threats: tracing North American weasel distributions through a century of climate and land use change. Landsc Ecol 39, 104. https://doi.org/10.1007/s10980-024-01902-3
- Davis, A. J., Groom, Q., Adriaens, T., Vanderhoeven, S., Oldoni, D., Desmet, P., … & Strubbe, D. (2024). Reproducible WiSDM: a workflow for reproducible invasive alien species risk maps under climate change scenarios using standardized open data. Frontiers in Ecology and Evolution, 12, 1148895. https://doi.org/10.3389/fevo.2024.1148895
-
2024. Insect pollinators: The time is now for identifying species of greatest conservation need. Wildlife Society Bulletin e1537. https://doi.org/10.1002/wsb.1537, , , , , , , and .
- Felix, F., Julia, L., Michael, O., Tingting, X., Shikun, G., Elia, G., … & Harald, M. (2024). Home-and-away comparisons of life history traits indicate enemy release and founder effects of the solitary bee, Megachile sculpturalis. Basic and Applied Ecology. https://doi.org/10.1016/j.baae.2024.02.008
- Goldstein, B. R., Stoudt, S., Lewthwaite, J. M., Shirey, V., Mendoza, E., & Guzman, L. M. (2024). Logistical and preference bias in participatory science butterfly data. Frontiers in Ecology and the Environment, e2783. https://doi.org/10.1002/fee.2783
- Huang, T., Morin, P. J., & Ruane, S. (2024). The impact of anthropogenic disturbance and climate change on the distribution of Dekay’s brown snake (Storeria dekayi). Biological Journal of the Linnean Society. https://doi.org/10.1093/biolinnean/blae053
- Isitt R, Liebhold AM, Turner RM, Battisti A, Bertelsmeier C, Blake R, Brockerhoff EG, Heard SB, Krokene P, Økland B, Nahrung HF, Rassati D, Roques A, Yamanaka T, Pureswaran DS (2024) Asymmetrical insect invasions between three world regions. NeoBiota 90: 35-51. https://doi.org/10.3897/neobiota.90.110942
- Jeong, Y. S., Lee, D. S., Lee, D. Y., & Park, Y. S. (2024). Predicting Potential Occurrence of Adelges tsugae (Homoptera: Adelgidae) on a Global Scale under Climate Change Scenarios Using Maximum Entropy Model. Global Ecology and Conservation, e02861. https://doi.org/10.1016/j.gecco.2024.e02861
- Ji H, Wei X, Ma D, Wang X, Liu Q (2024) Predicting the global potential distribution of two major vectors of Rocky Mountain Spotted Fever under conditions of global climate change. PLOS Neglected Tropical Diseases 18(1): e0011883. https://doi.org/10.1371/journal.pntd.0011883
- Khaliq, I., Rixen, C., Zellweger, F. et al. Warming underpins community turnover in temperate freshwater and terrestrial communities. Nat Commun 15, 1921 (2024). https://doi.org/10.1038/s41467-024-46282-z
- 2024). Data coverage, biases, and trends in a global citizen-science resource for monitoring avian diversity. Diversity and Distributions, 30, e13863. https://doi.org/10.1111/ddi.13863 , , & (
- 2024). Overwintering strategy regulates phenological sensitivity and consequences for ecological services in a clade of temperate North American insects. Functional Ecology, 38, 1075–1088. https://doi.org/10.1111/1365-2435.14543 , , , , , , & (
- Martín-Sánchez, R., Sancho-Knapik, D., Alonso-Forn, D. et al. (2024). Oak leaf morphology may be more strongly shaped by climate than by phylogeny. Annals of Forest Science 81, 14. https://doi.org/10.1186/s13595-024-01232-z
- Onuferko, T. M., & Rightmyer, M. G. (2024). A revision of the simplex species group of the cleptoparasitic bee genus Triepeolus Robertson, 1901 (Hymenoptera: Apidae). European Journal of Taxonomy, 950(1), 1–106. https://doi.org/10.5852/ejt.2024.950.2643
- Petersen, M. J., & Losey, J. E. (2024). Niche overlap with an exotic competitor mediates the abundant niche‐centre relationship for a native lady beetle. Diversity and Distributions, e13825. https://doi.org/10.1111/ddi.13825
- Pironon, S. et al. (2024). The global distribution of plants used by humans. Science 383:293-297.DOI:10.1126/science.adg8028
- Rousseau Josée S., Woodard S. Hollis, Jepsen Sarina, Du Clos Brianne, Johnston Alison, Danforth Bryan N., Rodewald Amanda D. (2024). Advancing bee conservation in the US: gaps and opportunities in data collection and reporting. Frontiers in Ecology and Evolution 12. https://www.frontiersin.org/articles/10.3389/fevo.2024.1346795
- Salazar‐Tortosa, D. F., Saladin, B., Castro, J., & Rubio de Casas, R. (2024). Climate change is predicted to impact the global distribution and richness of pines (genus Pinus) by 2070. Diversity and Distributions, e13849. https://doi.org/10.1111/ddi.13849
- 2024). Uncovering the cause of breakup between species’ range limits and niche limits under climate warming. Journal of Biogeography, 00, 1–14. https://doi.org/10.1111/jbi.14796 , , , , & (
- Shibasaki, S., Nakadai, R., & Nakawake, Y. (2024). Biogeographical distributions of trickster animals. Royal Society Open Science, 11(5), 231577. https://doi.org/10.1098/rsos.231577
- 2024). Rising minimum temperatures contribute to 50 years of occupancy decline among cold-adapted Arctic and boreal butterflies in North America. Global Change Biology, 30, e17205. https://doi.org/10.1111/gcb.17205 , , , & (
- 2024). Spatial Extent Drives Patterns of Relative Climate Change Sensitivity for Freshwater Fishes of the United States. Ecosphere 15(3): e4779. https://doi.org/10.1002/ecs2.4779 , , , and
- Steiner, M., Huettmann, F., Bryans, N. et al. With super SDMs (machine learning, open access big data, and the cloud) towards more holistic global squirrel hotspots and coldspots. Sci Rep 14, 5204 (2024). https://doi.org/10.1038/s41598-024-55173-8
- 2024) Contrasting impacts of non-native and threatened species on morphological, life history, and phylogenetic diversity in bird assemblages. Ecology Letters, 27, e14373. https://doi.org/10.1111/ele.14373 , & (
- Waldron, B. P., Watts, E. F., & Kuchta, S. R. (2024). Traversing the Great Lakes: Post‐glacial colonization by a widespread terrestrial salamander. Journal of Biogeography. https://doi.org/10.1111/jbi.14861
- 2024). Genetic divergence and ecological adaptation of an eastern North American spring ephemeral Sanguinaria canadensis. Diversity and Distributions, 00, e13813. https://doi.org/10.1111/ddi.13813 , , , , , , & (
- Yancy, A. J., Lee, B. R., Kuebbing, S. E., Neufeld, H. S., Spicer, M. E., & Heberling, J. M. (2024). Evaluating the definition and distribution of spring ephemeral wildflowers in eastern North America. American Journal of Botany, 111(5), e16323. https://doi.org/10.1002/ajb2.16323
- Yang, C. H., Feuer, B., Jubery, Z., Deng, Z. K., Nakkab, A., Hasan, M. Z., … & Ganapathysubramanian, B. (2024). Arboretum: A Large Multimodal Dataset Enabling AI for Biodiversity. arXiv preprint arXiv:2406.17720. web: https://baskargroup.github.io/Arboretum/ https://doi.org/10.48550/arXiv.2406.17720.
2023
- Ashley C. Wahlberg, Reuber Antoniazzi, and Christopher M. Schalk (2023). Patterns of the introduction, spread, and impact of the brown widow spider, Latrodectus geometricus (Araneae: Theridiidae), in the Americas. The Journal of Arachnology 51(2), 195-205. https://doi.org/10.1636/JoA-S-22-022
- Bonnamour, A., Blake, R. E., Liebhold, A. M., Nahrung, H. F., Roques, A., Turner, R. M., … & Bertelsmeier, C. (2023). Historical plant introductions predict current insect invasions. Proceedings of the National Academy of Sciences, 120(24), e2221826120. https://doi.org/10.1073/pnas.2221826120
- Callaghan, C.T., Borda-de-Água, L., van Klink, R. et al. (2023). Unveiling global species abundance distributions. Nat Ecol Evol 7, 1600–1609. https://doi.org/10.1038/s41559-023-02173-y
- 2023). Functional Traits Predict Species Co-Occurrence Patterns In a North American Odonata Metacommunity. Ecosphere 14(12): e4732. https://doi.org/10.1002/ecs2.4732 , , , and (
- Chen, Ying, Peng Zhao, Qiaochu Xu, Bingjie Qu, Dan Li, Sarah Clement, Li Li, (2023)
Relating biodiversity with health disparities of human population: An ecological study across the United States. One Health, Volume 16, https://doi.org/10.1016/j.onehlt.2023.100548. - Chesshire, P.R., Fischer, E.E., Dowdy, N.J., Griswold, T.L., Hughes, A.C., Orr, M.C., Ascher, J.S., Guzman, L.M., Hung, K.-L.J., Cobb, N.S. and McCabe, L.M. (2023), Completeness analysis for over 3000 United States bee species identifies persistent data gap. Ecography e06584. https://doi.org/10.1111/ecog.06584
- Chowdhury, S., Zalucki, M. P., Hanson, J. O., Tiatragul, S., Green, D., Watson, J. E., & Fuller, R. A. (2023). Three-quarters of insect species are insufficiently represented by protected areas. One Earth, 6(2), 139-146. https://doi.org/10.1016/j.oneear.2022.12.003 (pdf)
- Cobos, M. E., Nunez-Penichet, C., Campbell, P. D., Cooper, J. C., Machado-Stredel, F., Barve, N., … & Peterson, A. T. (2023). Effects of occurrence data density on conservation prioritization strategies. Biological Conservation, 284, 110207. https://doi.org/10.1016/j.biocon.2023.110207
- 2023). Diverse strategies for tracking seasonal environmental niches at hemispheric scale. Global Ecology and Biogeography, 00, 1–12. https://doi.org/10.1111/geb.13722 , & (
- Contreras-Díaz, R. G., Nori, J., Chiappa-Carrara, X., Peterson, A. T., Soberón, J., & Osorio-Olvera, L. (2023). Well-intentioned initiatives hinder understanding biodiversity conservation: Cloaked iNaturalist information for threatened species. Biological Conservation, 282, 110042. https://doi.org/10.1016/j.biocon.2023.110042
- Cunze, S., Klimpel, S. & Kochmann, J. Land cover and climatic conditions as potential drivers of the raccoon (Procyon lotor) distribution in North America and Europe. Eur J Wildl Res 69, 62 (2023). https://doi.org/10.1007/s10344-023-01679-x
- Daru, B.H., Rodriguez, J. (2023). Mass production of unvouchered records fails to represent global biodiversity patterns. Nat Ecol Evol 7, 816–831. https://doi.org/10.1038/s41559-023-02047-3
- 2023). Clustering future scenarios based on predicted range maps. Methods in Ecology and Evolution, 00, 1– 15. https://doi.org/10.1111/2041-210X.14080 , , , , , , & (
-
, , , , , , ,
- Douglas HB, Smith TW, Bouchard P (2023) Palaearctic leaf beetle Chrysolina fastuosa (Coleoptera, Chrysomelidae, Chrysomelinae) new to North America. Biodiversity Data Journal 11: e103261. https://doi.org/10.3897/BDJ.11.e103261
-
, , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
- Emberts, Z. (2023). Phasmid species that inhabit colder environments are less likely to have the ability to fly. Ecology and Evolution, 13, e10290. https://doi.org/10.1002/ece3.10290
- Espinoza, A. C., Urban-Mead, K. R., Buckner, M. A., Flórez-Gómez, N., Kueneman, J. G., & Danforth, B. N. (2023). Biology of Andrena (Callandrena Sensu Lato) Asteris Robertson (Hymenoptera: Andrenidae), an Eastern Aster Specialist that Makes a Very Deep Nest. Northeastern Naturalist, 29(4), 474-491. https://doi.org/10.1656/045.029.0406
- Ewes, T. (2023). A global analysis of changes in invertebrate species richness with area: deriving global species-area relationships from ecoregional species richness using occurrence records from the GBIF database. Open Universiteit, Thesis. (PDF)
- Fonseca, Emanuel M, Tara A Pelletier, Sydney K Decker, Danielle J Parsons, Bryan C Carstens (2023). Pleistocene glaciations caused the latitudinal gradient of within-species genetic diversity, Evolution Letters, Volume 7, Issue 5, Pages 331–338, https://doi.org/10.1093/evlett/qrad030
- Garcia‐Rosello, E., Gonzalez‐Dacosta, J., Guisande, C., & Lobo, J. M. (2023). GBIF falls short of providing a representative picture of the global distribution of insects. Systematic Entomology. https://doi.org/10.1111/syen.12589
- Gilman, A.V. (2023). Additions to the New Flora of Vermont — III. Phytoneuron 2023-33: 1–18. Published 6 September 2023. https://www.phytoneuron.net/wp-content/uploads/2023/09/33PhytoN-VermontAdditionsIII.pdf
- 2023) Niche differentiation, reproductive interference, and range expansion. Ecology Letters, 00, 1–15. Available from: https://doi.org/10.1111/ele.14350 , & (
- 2023). The global EPTO database: Worldwide occurrences of aquatic insects. Global Ecology and Biogeography, 00, 1– 14. https://doi.org/10.1111/geb.13648 , , , , , , , , , , , , , , , , , , … (
- Huang, Q., Bateman, B. L., Michel, N. L., Pidgeon, A. M., Radeloff, V. C., Heglund, P., … & Sauer, J. R. (2023). Modeled distribution shifts of North American birds over four decades based on suitable climate alone do not predict observed shifts. Science of the Total Environment, 857, 159603. https://doi.org/10.1016/j.scitotenv.2022.159603
- Mickayla Mulvihill Johnston, Richard E Feldman, Luis F De León, (2023). Range-wide site-occupancy modeling of Red-winged Blackbirds (Agelaius phoeniceus), Journal of Urban Ecology, Volume 9, Issue 1, 2023, juad015, https://doi.org/10.1093/jue/juad015
- Jones, A. G., Obrycki, J. J., Sethuraman, A., & Weisrock, D. W. (2023). Shared patterns of population genomic variation and phenotypic response across rapid range expansions in two invasive lady beetle species. bioRxiv, 2023-01. https://doi.org/10.1101/2023.01.13.523993
- 2023). Analysing ecological dynamics with relational event models: The case of biological invasions. Diversity and Distributions, 29, 1208–1225. https://doi.org/10.1111/ddi.13752 , , , , & (
- Kanmaz, O., Şenel, T., & Dalfes, H. N. (2023). A Modeling Framework to Frame a Biological Invasion: Impatiens glandulifera in North America. Plants, 12(7), 1433. https://doi.org/10.3390/plants12071433
- Keyser, S.R., Fink, D., Gudex-Cross, D., Radeloff, V.C., Pauli, J.N. and Zuckerberg, B. (2023), Snow cover dynamics: an overlooked yet important feature of winter bird occurrence and abundance across the United States. Ecography, 2023: e06378. https://doi.org/10.1111/ecog.06378
- Kindt, R. (2023). TreeGOER: A database with globally observed environmental ranges for 48,129 tree species. Global Change Biology. https://doi.org/10.1111/gcb.16914
- Liebherr, J. K., Liebhold, A. M., Woo, B., & Hajek, A. E. (2023). Range expansion within the northern USA by the accidentally introduced Carabus granulatus Linnaeus, 1758 (Coleoptera: Carabidae). BioInvasions Records, 12. (PDF)
- Lioy S, Carisio L, Manino A, Porporato M. Climatic Niche Differentiation between the Invasive Hornet Vespa velutina nigrithorax and Two Native Hornets in Europe, Vespa crabro and Vespa orientalis. Diversity. 2023; 15(4):495. https://doi.org/10.3390/d15040495
- Mähn, L. A., Hof, C., Brandl, R., & Pinkert, S. (2023). Beyond latitude: Temperature, productivity and thermal niche conservatism drive global body size variation in Odonata. Global Ecology and Biogeography. https://doi.org/10.1111/geb.13661
- Mandeville, C.P., Nilsen, E.B., Herfindal, I. et al. Participatory monitoring drives biodiversity knowledge in global protected areas. Commun Earth Environ 4, 240 (2023). https://doi.org/10.1038/s43247-023-00906-2
- Marneweck, Courtney J.https://doi.org/10.1676/22-00046 Stephen N. Harris Alex J. Jensen Meghan P. Keating Michael Muthersbaugh Dana L. Nelson Eduardo Rosales Elizabeth A. Saldo Keifer Titus David S. Jachowski (2023). Poleward expansion of Turkey Vultures (Cathartes aura) under future conditions. The Wilson Journal of Ornithology: 135(2): 118–126. doi:
- Medzihorský, V., Trombik, J., Mally, R., Turčáni, M., & Liebhold, A. M. (2023). Insect invasions track a tree invasion: Global distribution of black locust herbivores. Journal of Biogeography, 50, 1285–1298. https://doi.org/10.1111/jbi.14625
- Miller, Tricia A., Michael J. Lanzone, Melissa A. Braham, Adam E. Duerr, Jeff Cooper, Scott Somershoe, David Hanni, Eric C. Soehren, Carrie Threadgill, Mercedes Maddox, Jonathan Stober, Christine Kelly, Tom Salo, Andrew Berry, Mark Martell, Scott Mehus, Brian Dirks, Robert Sargent, and Todd E. Katzner (2023). Winter Distribution of Golden Eagles in the Eastern USA,” Journal of Raptor Research 57(4): 522-532. https://doi.org/10.3356/JRR-23-00012
- Moreira, H., Kuipers, K. J., Posthuma, L., Zijp, M. C., Hauck, M., Huijbregts, M. A., & Schipper, A. M. (2023). Threats of land use to the global diversity of vascular plants. Diversity and Distributions. https://doi.org/10.1111/ddi.13693
- Nizamani, M. M., Papeş, M., Wang, H. F., & Harris, A. J. (2023). How does spatial extent and environmental limits affect the accuracy of species richness estimates from ecological niche models? A case study with North American Pinaceae and Cactaceae. Ecology and Evolution, 13(4), e10007. https://doi.org/10.1002/ece3.10007
- Oliver, R. Y., Iannarilli, F., Ahumada, J., Fegraus, E., Flores, N., Kays, R., … & Jetz, W. (2023). Camera trapping expands the view into global biodiversity and its change. Philosophical Transactions of the Royal Society B, 378(1881), 20220232. https://doi.org/10.1098/rstb.2022.0232
- Ondo, I., Dhanjal-Adams, K., Pironon, S., Silvestro, D., Deklerck, V., Grace, O., … & Antonelli, A. (2023). Plant diversity darkspots for global collection priorities. bioRxiv, 2023-09. https://doi.org/10.1101/2023.09.12.557387
- Pinkert, S., Sica, Y.V., Winner, K. and Jetz, W. (2023), The potential of ecoregional range maps for boosting taxonomic coverage in ecology and conservation. Ecography, 2023: e06794. https://doi.org/10.1111/ecog.06794
- Pope, N. S., Singh, A., Childers, A. K., Kapheim, K. M., Evans, J. D., & López-Uribe, M. M. (2023). The expansion of agriculture has shaped the recent evolutionary history of a specialized squash pollinator. Proceedings of the National Academy of Sciences, 120(15), e2208116120. https://doi.org/10.1073/pnas.2208116120
- Prytula, E. D., Reudink, M. W., LaZerte, S. E., Sonnleitner, J., & McKellar, A. E. (2023). Shifts in breeding distribution, migration timing, and migration routes of two North American swift species. Journal of Field Ornithology, 94(3). https://doi.org/10.5751/JFO-00341-940314
-
Advancing bee conservation in the US: gaps and opportunities in data collection and reporting
- Sáenz-Ceja, J. E., & Mendoza, M. E. (2023). Priority areas for the conservation of the genus Abies Mill.(Pinaceae) in North America. Journal for Nature Conservation, 126407. https://doi.org/10.1016/j.jnc.2023.126407
-
Impact of climate change on leafhopper vectors of phytoplasmas in North America.
- Saunders, Sarah P., Joanna Grand, Brooke L Bateman, Mariah Meek, Chad B Wilsey, Nicole Forstenhaeusler, Erin Graham, Rachel Warren, Jeff Price (2023). ntegrating climate-change refugia into 30 by 30 conservation planning in North America. Front Ecol Environ 2023; 21(2): 77–84, https://doi.org/10.1002/fee.2592
- Schertler, A., Lenzner, B., Dullinger, S., Moser, D., Bufford, J. L., Ghelardini, L., … & Essl, F. (2023). Biogeography and global flows of 100 major alien fungal and fungus‐like oomycete pathogens. Journal of Biogeography. https://doi.org/10.1111/jbi.14755
- Sheffield C, Palmier KM (2023) Range expansion of Bombus (Pyrobombus) bimaculatus Cresson in Canada (Hymenoptera, Apidae). Biodiversity Data Journal 11: e104657. https://doi.org/10.3897/BDJ.11.e104657
- Shirey, V., Neupane, N., Guralnick, R., & Ries, L. (2023). Rising minimum temperatures contribute to 50 years of shifting Arctic and boreal butterfly communities in North America. bioRxiv, 2023-04. https://doi.org/10.1101/2023.04.24.538168
- 2023). Including imprecisely georeferenced specimens improves accuracy of species distribution models and estimates of niche breadth. Global Ecology and Biogeography, 00, 1– 14. https://doi.org/10.1111/geb.13628 , , , & (
- Su, J., Liu, W., Hu, F., Miao, P., Xing, L., & Hua, Y. (2023). The Distribution Pattern and Species Richness of Scorpionflies (Mecoptera: Panorpidae). Insects, 14(4), 332. https://doi.org/10.3390/insects14040332
- Szabo, J. K., Forti, L. R., & Callaghan, C. T. (2023). Large biodiversity datasets conform to Benford’s law: Implications for assessing sampling heterogeneity. Biological Conservation, 280, 109982. https://doi.org/10.1016/j.biocon.2023.109982
- Tourville, Jordon, Georgia Murray, Sarah Nelson (2023). Distinct latitudinal patterns of shifting spring phenology across the Appalachian Trail Corridor. bioRxiv 2023.12.11.571108; doi: https://doi.org/10.1101/2023.12.11.571108
- Vivas-Toro, I., Martínez-Méndez, N., Sagot, M., León-Avila, G., & Ortega, J. (2023). Landscape genetics of the Southern Flying Squirrel (Glaucomys volans) in the northeastern United States. Journal of Mammalogy, gyad009. https://doi.org/10.1093/jmammal/gyad009
- Wang S, Lu Y, Han M, Li L, He P, Shi A, Bai M. (2023). Using MaxEnt Model to Predict the Potential Distribution of Three Potentially Invasive Scarab Beetles in China. Insects 14(3):239. https://doi.org/10.3390/insects14030239
- Woodworth, E., Tian, A., Blair, K. et al. Media myopia distorts public interest in US invasive plants. Biol Invasions (2023). https://doi.org/10.1007/s10530-023-03101-8
- Xu, WB., Blowes, S.A., Brambilla, V. et al. (2023). Regional occupancy increases for widespread species but decreases for narrowly distributed species in metacommunity time series. Nat Commun 14, 1463. https://doi.org/10.1038/s41467-023-37127-2
2022
- Alves-Ferreira, G., Talora, D. C., Solé, M., Cervantes-López, M. J., & Heming, N. M. (2022). Unraveling global impacts of climate change on amphibians distributions: A life-history and biogeographic-based approach. Frontiers in Ecology and Evolution, 1111. https://doi.org/10.3389/fevo.2022.987237
- Armitage, D. W. (2022). Global maps of lake surface water temperatures reveal pitfalls of air-for-water substitutions in ecological prediction. Ecography, e06595. https://doi.org/10.1111/ecog.06595
- Ankori‐Karlinsky, R., Kalyuzhny, M., Barnes, K. F., Wilson, A. M., Flather, C., Renfrew, R., … & Kadmon, R. (2022). North American Breeding Bird Survey underestimates regional bird richness compared to Breeding Bird Atlases. Ecosphere, 13(2), e3925. https://doi.org/10.1002/ecs2.3925
- Belitz, M. W., Barve, V., Doby, J. R., Hantak, M. M., Larsen, E. A., Li, D., … & Stucky, B. J. (2021). Climate drivers of adult insect activity are conditioned by life history traits. Ecology Letters, 24(12), 2687-2699. https://doi.org/10.1111/ele.13889
- Bernal-Escobar, M., Zuleta, D. and Feeley, K.J. (2022), Changes in the climate suitability and growth rates of trees in eastern North America. Ecography, 2022: e06298. https://doi.org/10.1111/ecog.06298
- Borgelt, J., Dorber, M., Høiberg, M. A., & Verones, F. (2022). More than half of data deficient species predicted to be threatened by extinction. Communications biology, 5(1), 1-9. https://doi.org/10.1038/s42003-022-03638-9
- Boyle, B. L., Maitner, B. S., Barbosa, G. G., Sajja, R. K., Feng, X., Merow, C., … & Enquist, B. J. (2022). Geographic name resolution service: A tool for the standardization and indexing of world political division names, with applications to species distribution modeling. Plos one, 17(11), e0268162. https://doi.org/10.1371/journal.pone.0268162
- Buckner, Mark A., and Bryan N. Danforth. 2022. “Climate-Driven Range Shifts of a Rare Specialist Bee, Macropis Nuda (Melittidae), and Its Host Plant, Lysimachia Ciliata (Primulaceae).” Global Ecology and Conservation, June, e02180. https://doi.org/10.1016/j.gecco.2022.e02180
- Calhoun, John V. (2022).A local irruption of Chlosyne nycteis (Nymphalidae) in Maine, with an important new food plant record. News of The Lepidopterists’ Society 64(1): 26-33. https://images.peabody.yale.edu/lepsoc/nls/2020s/2022/2022_v64_n1.pdf
- Cano‐Barbacil, C., Radinger, J., Olden, J. D., & García‐Berthou, E. (2022). Estimates of niche position and breadth vary across spatial scales for native and alien inland fishes. Global Ecology and Biogeography. https://doi.org/10.1111/geb.13630
- Carvalho, A. P. S., Owens, H. L., St Laurent, R. A., Earl, C., Dexter, K. M., Messcher, R. L., … & Lohman, D. J. (2022). Diversification is correlated with temperature in white and sulfur butterflies. bioRxiv. https://doi.org/10.1101/2022.09.22.509088
- Chu, J. J., Gillis, D. P., & Riskin, S. H. (2022) Community science reveals links between migration arrival timing advance, migration distance, and wing shape. Journal of Animal Ecology. https://doi.org/10.1111/1365-2656.13755
- Crowley, Cynthia M., Kyle F. Tansley, and Neil J. Buckley (2022). First Breeding Record of the Black Vulture (Coragyps atratus) in Vermont, Northeastern Naturalist 29(1), N1-N5. https://doi.org/10.1656/045.029.0103
- David, K. T. (2022). Global gradients in the distribution of animal polyploids. Proceedings of the National Academy of Sciences, 119(48), e2214070119. https://doi.org/10.1073/pnas.2214070119
- Dorian, N. N., McCarthy, M. W., & Crone, E. E. (2022). Ecological traits explain long‐term phenological trends in solitary bees. Journal of Animal Ecology. https://doi.org/10.1111/1365-2656.13778
- DuBose, T. P., Moore, C. E., Silknetter, S., Benson, A. L., Alexander, T., O’Malley, G., & Mims, M. C. (2023). Mismatch between conservation status and climate change sensitivity leaves some anurans in the United States unprotected. Biological Conservation, 277, 109866. https://doi.org/10.1016/j.biocon.2022.109866
- Ecke, F., Han, B.A., Hörnfeldt, B. et al. Population fluctuations and synanthropy explain transmission risk in rodent-borne zoonoses. Nat Commun 13, 7532 (2022). https://doi.org/10.1038/s41467-022-35273-7
- Feng, X., Enquist, B. J., Park, D. S., Boyle, B., Breshears, D. D., Gallagher, R. V., … & López‐Hoffman, L. (2022). A review of the heterogeneous landscape of biodiversity databases: opportunities and challenges for a synthesized biodiversity knowledge base. Global Ecology and Biogeography. https://doi.org/10.1111/geb.13497
- Fontaine, A., Simard, A., Brunet, N., & Elliott, K. H. (2022). The scientific contributions of citizen science applied to rare or threatened animals. Conservation Biology. https://doi.org/10.1111/cobi.13976
- Gatti, R. C., Reich, P. B., Gamarra, J. G., Crowther, T., Hui, C., Morera, A., … & Liang, J. (2022). The number of tree species on Earth. Proceedings of the National Academy of Sciences, 119(6). https://doi.org/10.1073/pnas.2115329119
- Hantak, Maggie M., Robert P. Guralnick, Alina Zare, Brian J. Stucky (2022). Computer vision for assessing species color pattern variation from web-based community science images. bioRxiv 2022.02.11.480114; doi: https://doi.org/10.1101/2022.02.11.480114
- Hardy, Spencer, Michael T. Hallworth, Mark Ferguson, Nathaniel Sharp, Jason Loomis, Emily Anderson, Kent McFarland (2022). The State of Vermont’s Wild Bees 2022. https://stateofbees.vtatlasoflife.org/. Vermont Center for Ecostudies-Vermont Atlas of Life. https://doi.org/10.5281/zenodo.7261315
- Haas, E. K., La Sorte, F. A., McCaslin, H. M., Belotti, M. C., & Horton, K. G. (2022). The correlation between eBird community science and weather surveillance radar‐based estimates of migration phenology. Global Ecology and Biogeography, 31(11), 2219-2230. https://doi.org/10.1111/geb.13567
- Jackson, H. M., Johnson, S. A., Morandin, L. A., Richardson, L. L., Guzman, L. M., & M’Gonigle, L. K. (2022). Climate change winners and losers among North American bumblebees. Biology Letters, 18(6), 20210551. https://doi.org/10.1098/rsbl.2021.0551
- La Sorte, F. A., Lepczyk, C. A., & Aronson, M. F. (2023). Light pollution enhances ground‐level exposure to airborne toxic chemicals for nocturnally migrating passerines. Global Change Biology, 29(1), 57-68. https://doi.org/10.1111/gcb.16443
- Lanner, J., Dubos, N., Geslin, B., Leroy, B., Hernández-Castellano, C., Dubaić, J. B., … & Meimberg, H. (2022). On the road: Anthropogenic factors drive the invasion risk of a wild solitary bee species. Science of The Total Environment, 154246. https://doi.org/10.1016/j.scitotenv.2022.154246
- Larsen, E. A., Belitz, M. W., Guralnick, R. P., & Ries, L. (2022). Consistent trait-temperature interactions drive butterfly phenology in both incidental and survey data. Scientific Reports, 12(1), 1-10. https://doi.org/10.1038/s41598-022-16104-7
- 2022). Global patterns and drivers of herbivorous eriophyoid mite species diversity. Journal of Biogeography, 00, 1– 11. https://doi.org/10.1111/jbi.14535 , , , , & (
- Liao, J., Wu, Z., Wang, H., Xiao, S., Mo, P., & Cui, X. (2023). Projected Effects of Climate Change on Species Range of Pantala flavescens, a Wandering Glider Dragonfly. Biology, 12(2), 226. https://doi.org/10.3390/biology12020226
- Lumbierres, M., Dahal, P.R., Soria, C.D. et al. Area of Habitat maps for the world’s terrestrial birds and mammals. Sci Data 9, 749 (2022). https://doi.org/10.1038/s41597-022-01838-w
- Keyser, S.R., Fink, D., Gudex-Cross, D., Radeloff, V.C., Pauli, J.N. and Zuckerberg, B. (2022), Snow cover dynamics: an overlooked yet important feature of winter bird occurrence and abundance across the United States. Ecography e06378. https://doi.org/10.1111/ecog.06378
- Machado-Stredel, F., Freeman, B., Jiménez-Garcia, D., Cobos, M. E., Nuñez-Penichet, C., Jiménez, L., … & Peterson, A. T. (2022). On the potential of documenting decadal-scale avifaunal change from before-and-after comparisons of museum and observational data across North America. Avian Research, 13, 100005. https://doi.org/10.1016/j.avrs.2022.100005
- 2022). Towards an understanding of future range shifts in lichens and mosses under climate change. Journal of Biogeography, 00, 1– 12. https://doi.org/10.1111/jbi.14542 , , , , , , & (
- Marcer, A., Chapman, A.D., Wieczorek, J.R., Xavier Picó, F., Uribe, F., Waller, J. and Ariño, A.H. (2022), Uncertainty matters: ascertaining where specimens in natural history collections come from and its implications for predicting species distributions. Ecography e06025. https://doi.org/10.1111/ecog.06025
- Morgan E Christman, Lori R Spears, Jonathan B U Koch, Thuy-Tien T Lindsay, James P Strange, Cody L Barnes, Ricardo A Ramirez, Captive Rearing Success and Critical Thermal Maxima of Bombus griseocollis (Hymenoptera: Apidae): A Candidate for Commercialization?, Journal of Insect Science, Volume 22, Issue 6, November 2022, 2, https://doi.org/10.1093/jisesa/ieac064
- Nguyen, D., & Leung, B. (2021). How well do species distribution models predict occurrences in exotic ranges?. Global Ecology and Biogeography. https://doi.org/10.1111/geb.13482
- 2022). Artificial Hotspot Occurrence Inventory (AHOI). Journal of Biogeography, 00, 1– 9. https://doi.org/10.1111/jbi.14543 , , , , & (
- 2022) Pollen specialisation is associated with later phenology in Osmia bees (Hymenoptera: Megachilidae). Ecological Entomology, 1– 10. https://doi.org/10.1111/een.13211 & (
- Pinkert, S., Barve, V., Guralnick, R., & Jetz, W. (2022). Global geographical and latitudinal variation in butterfly species richness captured through a comprehensive country‐level occurrence database. Global Ecology and Biogeography. https://doi.org/10.1111/geb.13475
- Pinkert, S., Sica, Y., Winner, K., & Jetz, W. (2022). The potential of ecoregional range maps for boosting taxonomic coverage in large-scale ecology and conservation. Authorea Preprints. https://www.authorea.com/doi/pdf/10.22541/au.167156303.39224288
- Qian, H., Zhang, J., & Jiang, M. C. (2022). Global patterns of fern species diversity: an evaluation of fern data in GBIF. Plant Diversity, 44(2), 135-140. https://doi.org/10.1016/j.pld.2021.10.001
- Richardson, Leif et al. (2022), Bumble bee occurrences of North America from 1805–2020, Dryad, Dataset, https://doi.org/10.5061/dryad.c59zw3r8f
- 2023). Exploring the impact of data curation criteria on the observed geographical distribution of mosses. Ecology and Evolution, 13, e10786. https://doi.org/10.1002/ece3.10786 , , , & (
- Wilson Rankin, E.E. and Rankin, D.T. (2022), Secondary nectar robbing by Lycaenidae and Riodinidae: Opportunistic but not infrequent. Ecology. e3892. https://doi.org/10.1002/ecy.3892
- Sandall, E. L., Pinkert, S., & Jetz, W. (2022). Country‐level checklists and occurrences for the world’s Odonata (dragonflies and damselflies). Journal of Biogeography, 49(8), 1586-1598. https://doi.org/10.1111/jbi.14457
- 2023). Occupancy–detection models with museum specimen data: Promise and pitfalls. Methods in Ecology and Evolution, 14, 402– 414. https://doi.org/10.1111/2041-210X.13896 , , , & (
- Song, J. W., Jung, J. M., Nam, Y. W., Byun, H. M., Yoon, S. H., Jung, S. H., & Lee, W. H. (2022). Spatiotemporal Statistics for Analyzing Climatic Conditions Influencing Lymantria dispar Outbreaks. Forests, 13(9), 1474. https://doi.org/10.3390/f13091474
- 2022). The risks and rewards of community science for threatened species monitoring. Conservation Science and Practice, e12788. https://doi.org/10.1111/csp2.12788 , , , , , , , , , , , , & (
- 2022. “ Clustering Community Science Data to Infer Songbird Migratory Connectivity in the Western Hemisphere.” Ecosphere 13( 4): e4011. https://doi.org/10.1002/ecs2.4011 , , , , and .
- Widmer, Brian W., Thomas M. Gehring,Benjamin W. Heumann,Kirsten E. Nicholson (2022). Climate change and range restriction of common salamanders in eastern Canada and the United States. Journal of Wildlife Management. https://doi.org/10.1002/jwmg.22235
- Wilson Rankin, E. E., & Rankin, D. T. Secondary nectar robbing by Lycaenidae and Riodinidae: Opportunistic but not infrequent. Ecology, e3892. https://doi.org/10.1002/ecy.3892
- Wolf, S., Mahecha, M. D., Sabatini, F. M., Wirth, C., Bruelheide, H., Kattge, J., … & Kattenborn, T. (2022). Citizen science plant observations encode global trait patterns. Nature Ecology & Evolution, 6(12), 1850-1859. https://doi.org/10.1038/s41559-022-01904-x
- Wu, Y., & Ricklefs, R. E. (2022) Linking multiple hypotheses to a unifying framework of range‐size variation: A case study with American oaks (Quercus spp.). Global Ecology and Biogeography. https://doi.org/10.1111/geb.13610
- Wu, Y., & Colautti, R. I. (2022). Evidence for continent-wide convergent evolution and stasis throughout 150 y of a biological invasion. Proceedings of the National Academy of Sciences, 119(18), e2107584119. https://doi.org/10.1073/pnas.2107584119
- Xiaocheng, S., Jiqi, L., Yingdang, R., Qi, S., Zhixing, Y., Xintao, L., … & Linlin, Y. (2022). Distribution Pattern and Geographical Division of Terrestrial Living Things in the World. Journal of Environmental Science and Engineering B 11: 165-188. DOI:10.17265/2162-5263/2022.05.002.
- Zhang, Xinke, Guoshuai Zhang, Lixia Tian, Linfang Huang (2023).
Ecological regulation network of quality in American Ginseng: Insights from macroscopic-mesoscopic-microscopic perspectives. Industrial Crops and Products 206: 117617. https://doi.org/10.1016/j.indcrop.2023.117617.
2021
- Arlé, E., Zizka, A., Keil, P., Winter, M., Essl, F., Knight, T., … & Meyer, C. (2021). bRacatus: a method to estimate the accuracy and biogeographical status of georeferenced biological data. Methods in Ecology and Evolution. https://doi.org/10.1111/2041-210X.13629
- Bates, A. E., Primack, R. B., Duarte, C. M., & PAN-Environment Working Group (incl. K.P. McFarland). (2021). Global COVID-19 lockdown highlights humans as both threats and custodians of the environment. Biological Conservation, 109175. https://doi.org/10.1016/j.biocon.2021.109175
- Beckman, E., Meyer, A., Pivorunas, D., Hoban, S., & Westwood, M. (2021). Conservation Gap Analysis of American Beech. Lisle, IL: The Morton Arboretum. https://www.mortonarb.org/app/uploads/2021/05/conservation_gap_analysis_of_american_beech.pdf
- Beckman, E., Meyer, A., Pivorunas, D., Hoban, S., & Westwood, M. (2021). Conservation Gap Analysis of Native U.S. Hickories. Lisle, IL: The Morton Arboretum. https://www.mortonarb.org/app/uploads/2021/05/conservation_gap_analysis_of_native_us_hickories.pdf
- Beckman, E., Meyer, A., Pivorunas, D., Hoban, S., & Westwood, M. (2021). Conservation Gap Analysis of Native U.S. Walnuts. Lisle, IL: The Morton Arboretum. https://www.mortonarb.org/app/uploads/2021/08/conservation-gap-analysis-of-native-us-walnuts.pdf
- Beckman, E., Meyer, A., Pivorunas, D., Hoban, S., & Westwood, M. (2021). Conservation Gap Analysis of Native U.S. Yews. Lisle, IL: The Morton Arboretum. https://www.mortonarb.org/app/uploads/2021/05/conservation_gap_analysis_of_native_us_yews.pdf
- Beery, S. (2021) Scaling biodiversity monitoring for the data age. XRDS: Crossroads, The ACM Magazine for Students. https://dl.acm.org/doi/10.1145/3466857
- Belitz, M., Barve, V., Doby, J., Hantak, M., Larsen, E., Li, D., … & Stucky, B. (2021). Climate drivers of adult insect activity are conditioned by life history traits. Ecological Letters https://doi.org/10.1111/ele.13889
- Belitz, Michael, Vijay Barve, Joshua Doby, et al. Climate drivers of adult insect activity are conditioned by life history traits. Authorea. March 18, 2021.
DOI: 10.22541/au.161607528.84717107/v1 - Bemmels, J. B., Bramwell, A. C., Anderson, S. A., Luzuriaga‐Aveiga, V. E., Mikkelsen, E. K., & Weir, J. T. (2021). Geographic contact drives increased reproductive isolation in two cryptic Empidonax flycatchers. Molecular Ecology, 30(19), 4833-4844. https://doi.org/10.1111/mec.16105
- Bonnamour, A., Gippet, J. M., & Bertelsmeier, C. (2021). Insect and plant invasions follow two waves of globalisation. Ecology letters, 24(11), 2418-2426. https://doi.org/10.1111/ele.13863
- Buffalo, V. (2021). Quantifying the relationship between genetic diversity and population size suggests natural selection cannot explain Lewontin’s Paradox. Elife, 10, e67509. https://doi.org/10.7554/eLife.67509
- Busch, Anna K., Briana E Wham, John F Tooker (2021). Life History, Biology, and Distribution of Pterostichus melanarius (Coleoptera: Carabidae) in North America, Environmental Entomology https://doi.org/10.1093/ee/nvab090
- Callaghan, C. T., Nakagawa, S., & Cornwell, W. K. (2021). Global abundance estimates for 9,700 bird species. Proceedings of the National Academy of Sciences, 118(21). https://doi.org/10.1073/pnas.2023170118
- Callaghan, C. T., Poore, A. G., Hofmann, M., Roberts, C. J., & Pereira, H. M. (2021). Large-bodied birds are over-represented in unstructured citizen science data. Scientific reports, 11(1), 1-11. https://doi.org/10.1038/s41598-021-98584-7
- Carril, O. M., & Wilson, J. S. (2021). Common Bees of Eastern North America (Vol. 151). Princeton University Press.
- Cohen, J.M., D. Fink, and B. Zuckerberg (2021). Extreme winter weather disrupts bird occurrence and abundance patterns at geographic scales. Ecography https://doi.org/10.1111/ecog.05495
- Crimmins, T. M., Posthumus, E., Schaffer, S., & Prudic, K. L. (2021). COVID-19 impacts on participation in large scale biodiversity-themed community science projects in the United States. Biological Conservation, 256, 109017. https://doi.org/10.1016/j.biocon.2021.109017
- Cuddington, K., Sobek-Swant, S., Drake, J. et al. (2021). Risks of giant hogweed (Heracleum mantegazzianum) range increase in North America. Biol Invasions. https://doi.org/10.1007/s10530-021-02645-x
- Delso, Á., Fajardo, J. & Muñoz, J. Protected area networks do not represent unseen biodiversity. Sci Rep 11, 12275 (2021). https://doi.org/10.1038/s41598-021-91651-z
- Geest, Emily A., Kristen A Baum, Environmental Variables Influencing Five Speyeria (Lepidoptera: Nymphalidae) Species’ Potential Distributions of Suitable Habitat in the Eastern United States, Environmental Entomology, 2021;, nvab001, https://doi.org/10.1093/ee/nvab001
- Gudex-Cross, D., Keyser, S. R., Zuckerberg, B., Fink, D., Zhu, L., Pauli, J. N., & Radeloff, V. C. (2021). Winter Habitat Indices (WHIs) for the contiguous US and their relationship with winter bird diversity. Remote Sensing of Environment, 255, 112309. https://doi.org/10.1016/j.rse.2021.112309
- Guo, W. Y., Serra-Diaz, J. M., Schrodt, F., Eiserhardt, W. L., Maitner, B. S., Merow, C., … & Svenning, J. C. (2022). High exposure of global tree diversity to human pressure. Proceedings of the National Academy of Sciences, 119(25), e2026733119. https://doi.org/10.1073/pnas.2026733119
- Hirt, M. R., Barnes, A. D., Gentile, A., Pollock, L. J., Rosenbaum, B., Thuiller, W., … & Brose, U. (2021). Environmental and anthropogenic constraints on animal space use drive extinction risk worldwide. Ecology Letters. https://doi.org/10.1111/ele.13872
- Hochachka, W. M., Alonso, H., Gutiérrez-Expósito, C., Miller, E., & Johnston, A. (2021). Regional variation in the impacts of the COVID-19 pandemic on the quantity and quality of data collected by the project eBird. Biological Conservation, 254, 108974. https://doi.org/10.1016/j.biocon.2021.108974
- Hughes, A. C., Orr, M. C., Ma, K., Costello, M. J., Waller, J., Provoost, P., … & Qiao, H. (2021). Sampling biases shape our view of the natural world. Ecography. https://doi.org/10.1111/ecog.05926
- Hughes, A. C., Orr, M. C., Yang, Q., & Qiao, H. (2021). Effectively and accurately mapping global biodiversity patterns for different regions and taxa. Global Ecology and Biogeography. https://doi.org/10.1111/geb.13304
- Humphreys, J. M., Young, K. I., Cohnstaedt, L. W., Hanley, K. A., & Peters, D. P. (2021). Vector Surveillance, Host Species Richness, and Demographic Factors as West Nile Disease Risk Indicators. Viruses, 13(5), 934. https://doi.org/10.3390/v13050934
- Jiangyong Qu, Yanran Xu, Yutong Cui, Sen Wu, Lijun Wang, Xiumei Liu, Zhikai Xing, Xiaoyu Guo, Shanshan Wang, Ruoran Li, Xiaoyue Sun, Xiang Li, Xiyue Wang, Tao Liu, Xumin Wang (2021). MODB: a comprehensive mitochondrial genome database for Mollusca, Database, Volume 2021, baab056, https://doi.org/10.1093/database/baab056
- Juergens, J., Bruslund, S., Staerk, J., Nielsen, R. O., Shepherd, C. R., Leupen, B., … & Conde, D. A. (2021). A standardized dataset for conservation prioritization of songbirds to support CITES. Data in Brief, 36, 107093. https://doi.org/10.1016/j.dib.2021.107093
- Laney, J. A., Hallman, T. A., Curtis, J. R., & Robinson, W. D. (2021). The influence of rare birds on observer effort and subsequent rarity discovery in the American birdwatching community. PeerJ, 9, e10713. https://peerj.com/articles/10713/
- Lewthwaite, J. M., & Mooers, A. Ø. Geographical homogenization but little net change in the local richness of Canadian butterflies. Global Ecology and Biogeography. https://doi.org/10.1111/geb.13426
- Lumbierres, M., Dahal, P. R., Di Marco, M., Butchart, S. H., Donald, P. F., & Rondinini, C. (2021). Translating habitat class to land cover to map area of habitat of terrestrial vertebrates. Conservation Biology. https://doi.org/10.1111/cobi.13851
- McGeoch, M. A., Arlé, E., Belmaker, J., Buba, Y., Clarke, D. A., Essl, F., … & Winter, M. (2021). Policy-relevant indicators for invasive alien species assessment and reporting. bioRxiv. https://doi.org/10.1101/2021.08.26.457851
- Nastasi LF, Deans AR (2021) Catalogue of Rose Gall, Herb Gall, and Inquiline Gall Wasps (Hymenoptera: Cynipidae) of the United States, Canada and Mexico. Biodiversity Data Journal 9: e68558. https://doi.org/10.3897/BDJ.9.e68558.
- Oliver, R. Y., Meyer, C., Ranipeta, A., Winner, K., & Jetz, W. (2021). Global and national trends, gaps, and opportunities in documenting and monitoring species distributions. PLoS Biology, 19(8), e3001336. https://doi.org/10.1371/journal.pbio.3001336
- Palacio, R. D., Negret, P. J., Velásquez‐Tibatá, J., & Jacobson, A. P. (2021). A data‐driven geospatial workflow to map species distributions for conservation assessments. Diversity and Distributions. https://doi.org/10.1111/ddi.13424
- Pearman-Gillman, S. B., Katz, J. E., Mickey, R. M., Murdoch, J. D., & Donovan, T. M. (2020). Predicting wildlife distribution patterns in New England USA with expert elicitation techniques. Global Ecology and Conservation, 21, e00853. https://doi.org/10.1016/j.gecco.2019.e00853
- Pelletier, Tara A , Danielle J Parsons, Sydney K Decker, Stephanie Crouch, Eric Franz, Jeffery Ohrstrom, Bryan C Carstens (2021). phylogatR: Phylogeographic data aggregation and repurposing
bioRxiv 2021.10.11.461680 https://doi.org/10.1101/2021.10.11.461680 - Pitman, N.C.A., Suwa, T., Ulloa Ulloa, C. et al. Identifying gaps in the photographic record of the vascular plant flora of the Americas. Nat. Plants (2021). https://doi.org/10.1038/s41477-021-00974-2
- Powers, B. F., Winiarski, J. M., Requena‐Mullor, J. M., & Heath, J. A. (2021). Intra‐specific variation in migration phenology of American Kestrels (Falco sparverius) in response to spring temperatures. Ibis. https://doi.org/10.1111/ibi.12953
- Qian, H., Zhang, J., & Jiang, M. C. (2021). Global patterns of fern species diversity: An evaluation of fern data in GBIF. Plant Diversity. https://doi.org/10.1016/j.pld.2021.10.001
- Rocha‐Ortega, M., Rodriguez, P., & Córdoba‐Aguilar, A. (2021). Geographical, temporal and taxonomic biases in insect GBIF data on biodiversity and extinction. Ecological Entomology. DOI: 10.1111/een.13027
- Ruiz-Gutierrez, V., E. Bjerre, M. Otto, G. Zimmerman, B. Millsap, D. Fink, E. F. Stuber, M. Strimas-Mackey, and O. J. Robinson. (2021). A pathway for citizen-science data to inform policy: a case study using eBird data for defining low-risk collision areas for wind energy development. Journal of Applied Ecology. https://doi.org/10.1111/1365-2664.13870
- Schneider, K., Makowski, D., & van der Werf, W. (2021). Predicting hotspots for invasive species introduction in Europe. Environmental Research Letters, 16(11), 114026. https://doi.org/10.1088/1748-9326/ac2f19
- Schuetz, J. G., & Johnston, A. (2021). Tracking the cultural niches of North American birds through time. People and Nature, 3(1), 251-260. https://doi.org/10.1002/pan3.10173
- Somveille, M., Bay, R. A., Smith, T. B., Marra, P. P., & Ruegg, K. C. (2021). A general theory of avian migratory connectivity. Ecology Letters, 24(9), 1848-1858. https://doi.org/10.1111/ele.13817
- Shirey, V., Belitz, M.W., Barve, V. and Guralnick, R. (2021), A complete inventory of North American butterfly occurrence data: narrowing data gaps, but increasing bias. Ecography, 44: 537-547. https://doi.org/10.1111/ecog.05396
- Suissa, J. S., Sundue, M. A., & Testo, W. L. (2021). Mountains, climate and niche heterogeneity explain global patterns of fern diversity. Journal of Biogeography. https://doi.org/10.1038/s41559-021-01528-7
- Supp, S. R., Bohrer, G., Fieberg, J., & La Sorte, F. A. (2021). Estimating the movements of terrestrial animal populations using broad-scale occurrence data. Movement Ecology, 9(1), 1-19. https://doi.org/10.1186/s40462-021-00294-2
- Vermont Fish & Wildlife Department. (2021). Guidance for the Review & Mitigation of Impacts to Grassland Bird Habitat in Connection with Regulated Projects in Vermont. Vermont Agency of Natural Resources – Fish and Wildlife Department. Unpublished report October 2021. (pdf)
- Wilson J. Keaton, Casajus Nicolas, Hutchinson Rebecca A., McFarland Kent P., Kerr Jeremy T., Berteaux Dominique, Larrivée Maxim, Prudic Kathleen L. (2021). Climate Change and Local Host Availability Drive the Northern Range Boundary in the Rapid Expansion of a Specialist Insect Herbivore, Papilio cresphontes. Frontiers in Ecology and Evolution 9:85. https://doi.org/10.3389/fevo.2021.579230
- Zattara, E. E., & Aizen, M. A. (2021). Worldwide occurrence records suggest a global decline in bee species richness. One Earth, 4(1), 114-123. https://doi.org/10.1016/j.oneear.2020.12.005
2020
- BIEN: Botanical Information and Ecology Network 4.2. November 2020 https://bien.nceas.ucsb.edu/bien/
- Perez‐Navarro, M. A., Broennimann, O., Esteve, M. A., Moya‐Perez, J. M., Carreño, M. F., Guisan, A., & Lloret, F. Temporal variability is key to modelling the climatic niche. Diversity and Distributions. https://doi.org/10.1111/ddi.13207
- Liria, J., Szumik, C. A., & Goloboff, P. A. (2020). Analysis of endemism of world arthropod distribution data supports biogeographic regions and many established subdivisions. Cladistics. https://doi.org/10.1111/cla.12448
- Walker, J., and P. D. Taylor. 2020. Evaluating the efficacy of eBird data for modeling historical population trajectories of North American birds and for monitoring populations of boreal and Arctic breeding species. Avian Conservation and Ecology 15(2):10.
https://doi.org/10.5751/ACE-01671-150210 - La Sorte, F. A., & Horton, K. G. (2020). Seasonal variation in the effects of artificial light at night on the occurrence of nocturnally migrating birds in urban areas. Environmental Pollution, 116085. https://doi.org/10.1016/j.envpol.2020.116085
- Klingbeil, B. T., La Sorte, F. A., Lepczyk, C. A., Fink, D., & Flather, C. H. (2020). Geographical associations with anthropogenic noise pollution for North American breeding birds. Global Ecology and Biogeography, 29(1), 148-158. https://doi.org/10.1111/geb.13016
- Ingenloff, K., & Peterson, A. T. (2020). Incorporating time into the traditional correlational distributional modelling framework: A proof‐of‐concept using the Wood Thrush Hylocichla mustelina. Methods in Ecology and Evolution. https://doi.org/10.1111/2041-210X.13523
- Fink, D., Auer, T., Johnston, A., Ruiz‐Gutierrez, V., Hochachka, W. M., & Kelling, S. (2020). Modeling avian full annual cycle distribution and population trends with citizen science data. Ecological Applications, 30(3), e02056. https://doi.org/10.1002/eap.2056
- Neate-Clegg, M. H., Horns, J. J., Adler, F. R., Aytekin, M. Ç. K., & Şekercioğlu, Ç. H. (2020). Monitoring the world’s bird populations with community science data. Biological Conservation, 248, 108653. https://doi.org/10.1016/j.biocon.2020.108653
- Covino, K. M., Horton, K. G., & Morris, S. R. (2020). Seasonally specific changes in migration phenology across 50 years in the Black-throated Blue Warbler. The Auk, 137(2), ukz080.
- Weiser, E. L., Diffendorfer, J. E., Lopez-Hoffman, L., Semmens, D., & Thogmartin, W. E. (2020). Challenges for leveraging citizen science to support statistically robust monitoring programs. Biological Conservation, 242, 108411. https://doi.org/10.1016/j.biocon.2020.108411
- Orr, Michael C., Alice C. Hughes, Douglas Chesters, John Pickering, Chao-Dong Zhu, John S. Ascher (2020). Global Patterns and Drivers of Bee Distribution. Current Biology. DOI: https://doi.org/10.1016/j.cub.2020.10.053
- Chevalier, Manuel (2018): GBIF for CREST database. figshare. Dataset. https://doi.org/10.6084/m9.figshare.6743207.v8
- La Sorte, F. A., & Graham, C. H. (2020). Phenological synchronization of seasonal bird migration with vegetation greenness across dietary guilds. Journal of Animal Ecology. https://doi.org/10.1111/1365-2656.13345
- Smith, J. R., Hendershot, J. N., Nova, N., & Daily, G. C. (2020). The biogeography of ecoregions: Descriptive power across regions and taxa. Journal of Biogeography. https://doi.org/10.1111/jbi.13871
- Walton S, Livermore L, Bánki O, Cubey RWN, Drinkwater R, Englund M, Goble C, Groom Q, Kermorvant C, Rey I, Santos CM, Scott B, Williams AR, Wu Z (2020) Landscape Analysis for the Specimen Data Refinery. Research Ideas and Outcomes 6: e57602. https://doi.org/10.3897/rio.6.e57602
- Liu, X., Blackburn, T.M., Song, T. et al. Animal invaders threaten protected areas worldwide. Nat Commun 11, 2892 (2020). https://doi.org/10.1038/s41467-020-16719-2
- Mothes, C. C., Howell, H. J., & Searcy, C. A. (2020). Habitat suitability models for the imperiled Wood Turtle (Glyptemys insculpta) raise concerns for the species’ persistence under future climate change. Global Ecology and Conservation. https://doi.org/10.1016/j.gecco.2020.e01247
- Gladstone NS, Bordeau TA, Leppanen C, McKinney ML (2020) Spatiotemporal patterns of non-native terrestrial gastropods in the contiguous United States. NeoBiota 57: 133-152. https://doi.org/10.3897/neobiota.57.52195
- Chapman AD, Belbin L, Zermoglio PF, Wieczorek J, Morris PJ, Nicholls M, Rees ER, Veiga AK, Thompson A, Saraiva AM, James SA, Gendreau C, Benson A, Schigel D (2020) Developing Standards for Improved Data Quality and for Selecting Fit for Use Biodiversity Data. Biodiversity Information Science and Standards 4: e50889. https://doi.org/10.3897/biss.4.50889
- High correlation of species diversity patterns between specialist herbivorous insects and their specific hosts. J Biogeogr. 00: 1– 14. https://doi.org/10.1111/jbi.13816 , , , . (2020)
- Pearman-Gillman, S. B., Katz, J. E., Mickey, R. M., Murdoch, J. D., & Donovan, T. M. (2020). Predicting wildlife distribution patterns in New England USA with expert elicitation techniques. Global Ecology and Conservation, 21, e00853. https://doi.org/10.1016/j.gecco.2019.e00853
- van Nieukerken EJ, Eiseman CS (2020) Splitting the leafmining shield-bearer moth genus Antispila Hübner (Lepidoptera, Heliozelidae): North American species with reduced venation placed in Aspilanta new genus, with a review of heliozelid morphology. ZooKeys 957: 105-161. https://doi.org/10.3897/zookeys.957.53908
- Pegan, T. M., & Winger, B. M. (2020). The influence of seasonal migration on range size in temperate North American passerines. Ecography, 43(8), 1191-1202. https://doi.org/10.1111/ecog.05070
- Gilman, A.V., E.T. Doucette, B. Engstrom, A. Marcus, and M.J. Peters. (2020). Additions to the New Flora of Vermont—II. Phytoneuron 2020-16: 1–17. Published 28 February 2020. https://www.phytoneuron.net/2020Phytoneuron/16PhytoN-VermontFloraAdditions.pdf
2019
- Girardello, M., Chapman, A., Dennis, R., Kaila, L., Borges, P. A., & Santangeli, A. (2019). Gaps in butterfly inventory data: A global analysis. Biological conservation, 236, 289-295. https://doi.org/10.1016/j.biocon.2019.05.053
- Moore, M. P., Lis, C., Gherghel, I., & Martin, R. A. (2019). Temperature shapes the costs, benefits and geographic diversification of sexual coloration in a dragonfly. Ecology letters, 22(3), 437-446. https://doi.org/10.1111/ele.13200
2018
- Akin-Fajiye, M., Gurevitch, J. (2018). The influence of environmental factors on the distribution and density of invasive Centaurea stoebe across Northeastern USA. Biol Invasions 20, 3009–3023. https://doi.org/10.1007/s10530-018-1755-7
- Hallworth M.T., P.P. Marra, K.P. McFarland, S. Zahendra, C.E. Studds. 2018. Tracking dragons: stable isotopes reveal the annual cycle of a long-distance migratory insect. Biology Letters 14: 20180741. http://dx.doi.org/10.1098/rsbl.2018.0741 (PDF)
- Richardson, L.L., K.P. McFarland, S. Zahendra, and S. Hardy. 2018. Bumble bee (Bombus) distribution and diversity in Vermont, USA: a century of change. Journal of Insect Conservation. https://doi.org/10.1007/s10841-018-0113-5. (PDF)
- Serra-Diaz, J.M., Enquist, B.J., Maitner, B. et al. Big data of tree species distributions: how big and how good?. For. Ecosyst. 4, 30 (2017). https://doi.org/10.1186/s40663-017-0120-0
- Soroye, P., Ahmed, N., & Kerr, J. T. (2018). Opportunistic citizen science data transform understanding of species distributions, phenology, and diversity gradients for global change research. Global change biology, 24(11), 5281-5291. https://doi.org/10.1111/gcb.14358
- Smith, J. R., Letten, A. D., Ke, P. J., Anderson, C. B., Hendershot, J. N., Dhami, M. K., … & Routh, D. (2018). A global test of ecoregions. Nature Ecology & Evolution, 2(12), 1889-1896. https://doi.org/10.1038/s41559-018-0709-x
- U.S. Fish and Wildlife Service. 2018. Species status assessment report for the frosted elfin (Callophrys irus), Version 1.2. April 2018. Cortland, NY. https://www.fws.gov/sites/default/files/documents/508_frostedelfin_speciesstatusassessment.pdf
2017
- Merow, C., Bois, S. T., Allen, J. M., Xie, Y., & Silander, J. A. (2017). Climate change both facilitates and inhibits invasive plant ranges in New England. Proceedings of the National Academy of Sciences, 114(16), E3276-E3284. https://doi.org/10.1073/pnas.1609633114
- Prudic, K.L., K.P. McFarland, J.C. Oliver, R.A. Hutchinson, E.C. Long, J.T. Kerr, and M. Larrivée. 2017. eButterfly: Leveraging Massive Online Citizen Science for Butterfly Conservation. Insects 8(2): 53. doi:10.3390/insects8020053
- Serra-Diaz, J.M., Enquist, B.J., Maitner, B. et al. (2017). Big data of tree species distributions: how big and how good?. For. Ecosyst. 4, 30. https://doi.org/10.1186/s40663-017-0120-0
2016
- Davis, S. L., & Cipollini, D. (2016). Range, genetic diversity and future of the threatened butterfly, Pieris virginiensis. Insect Conservation and Diversity, 9(6), 506-516. https://doi.org/10.1111/icad.12189
2015
- Bell, Ross T. 2015. Carabidae of Vermont and New Hampshire. 2nd ed. Shires Press, Manchester Center, Vermont. 385pp. https://doi.org/10.6084/m9.figshare.7716359.v1
- Blust, M. and Pfeiffer, B. (2015). The Odonata of Vermont. Bulletin of American Odonatology 11(3-4), 69-119.
- van der Hoek, Y., A.M. Wilson, R.B. Renfrew, J. Walsh, P.G. Rodewald, J.Baldy, and L.L. Manne. 2015. Regional variability in extinction thresholds for forest birds in the north-eastern United States: an examination of potential drivers using long-term breeding bird atlas datasets. Diversity and Distributions DOI: 10.1111/ddi.12327 (Abstract)
2014
- McFarland, K.P., L. Richardson, and S. Zahendra. 2014. Rusty-patched Bumble Bee (Bombus affinis): Report to the Vermont Endangered Species Committee. DOI: 10.13140/RG.2.1.1305.9289 (PDF)
- McFarland, K.P., L. Richardson, and S. Zahendra. 2014. Yellow-banded Bumblebee (Bombus terricola): Report to the Vermont Endangered Species Committee. DOI: 10.13140/RG.2.1.1764.0405.1844 (PDF)
- McFarland, K.P., L. Richardson, and S. Zahendra. 2014. Ashton’s Cuckoo Bumblebee (Bombus ashtoni): A report to the Vermont Endangered Species Committee. DOI: 10.13140/RG.2.1.2026.1844 (PDF)
- White, Erin L., Pamela D. Hunt, Matthew D. Schlesinger, Jeffrey D. Corser, and Phillip G. deMaynadier. (2014). A conservation status assessment of Odonata for the
northeastern United States. New York Natural Heritage Program, Albany, NY. (PDF)
2013
- Renfrew, R. B., ed. 2013. The Second Atlas of Breeding Birds of Vermont. University Press of New England, Hanover, NH. 548 pp. https://doi.org/10.6084/m9.figshare.11499330.v1
- van der Hoek, Y., R.B. Renfrew, and L.L. Manne. 2013. Assessing regional and interspecific variation in threshold responses of forest breeding birds through broad scale analyses. PLoS ONE 8:e55996. https://doi.org/10.1371/journal.pone.0055996
2010
- Hunt, P. D., Blust, M., & Morrison, F. (2010). Lotic Odonata of the Connecticut River in New Hampshire and Vermont. Northeastern Naturalist,17(2), 175-188.
- McFarland, K.P. and S. Zahendra. 2010. The Vermont Butterfly Survey, 2002 – 2007: A Final Report to the Natural Heritage Information Project of the Vermont Department of Fish and Wildlife. 298 pp. dx.doi.org/10.6084/m9.figshare.827269.v1
pre-2000
- Laughlin, Sarah B. and Douglas P. Kibbe, eds. 1985. The Atlas of the Breeding Birds of Vermont. Hanover, NH: University Press of New England. 456pp. https://doi.org/10.6084/m9.figshare.11449779.v1